K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

(3 - m)x2 - 2(m + 3)x + m + 2 = 0 (2)

- Nếu 3 - m = 0 ⇔ m = 3 khi đó (2) trở thành -12x + 5 = 0 ⇔ x = 5/12

Do đó m = 3 không phải là giá trị cần tìm.

- Nếu 3 - m ≠ 0 ⇔ m ≠ 3 ta có:

Δ' = (m + 3)2 - (3 - m)(m + 2)

= m2 + 6m + 9 - 3m - 6 + m2 + 2m

= 2m2 + 5m + 3 = (m + 1)(2m + 3)

(2) vô nghiệm ⇔Δ' < 0⇔ (m + 1)(2m + 3) < 0 ⇔ m ∈ (-3/2; -1)

Vậy với m ∈ (-3/2; -1) thì phương trình vô nghiệm.

6 tháng 4 2017

a)pt vô nghiệm khi và chỉ khi:

\(\Delta'< 0\)\(\Leftrightarrow\left(2m-3\right)^2-\)\(\left(5m-6\right)\left(m-2\right)>0\Leftrightarrow-m^2+4m+21>0\Leftrightarrow m>-3\)\(m< 7\) (xét dấu tam thức bậc hai)

b) Tương tự câu a

15 tháng 6 2017

m=2 có nghiệm nhaNguyễn Khang Nghi

5 tháng 4 2017

a) \(x^2-2x+m^2+m+3=0\)
    Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
                                                        \(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
  DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.

b)

(1) a khác 0: \(m^2+m+3>0\forall m\)

(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)

\(=16m^4+4m^3+13m^2-8m+4>0\) 

(3) \(\dfrac{c}{a}>0\) => m > 0

(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý

Kết luận không có m thỏa mãn đk đầu bài

 

 

 

 

 

5 tháng 4 2017

a)

ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)

ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0

Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0

\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)

\(-1< m< 0\Rightarrow T< 0\)

\(-1< m< 1\Rightarrow M< 0\)

Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)

b)

M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)

Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn

=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0