Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
a, Thay x = -2, ta có :
f(-2) = (-2 )2 + ( m . -2 ) + 2 = 0
4 + ( -2m ) + 2 = 0
4 - 2m = -2
2m = 6 \(\Rightarrow\)m = 3
b, m = 3 \(\Rightarrow\)f(x) = x2 + 3x + 2
f(x) = 0
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(2+x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-2\end{cases}}\)
a) (-2)+m.(-2)+2=0 <=> m=3 b) f(x)=x2+3x+2
f(x) có tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận -1 làm một nghiệm.Như vậy f(x) có 2 nghiệm là -2 (theo câu a) và -1 ngoài ra ko còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là hai nghiệm.Do đó tập hợp các nghiệm của f(x) là S={-1:-2}
Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)
Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)
Ta có: \(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
\(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)