Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
<=> abcabc = abcx(1000+1) = abc x 1001
ta có: ax bcd x abc = abcabc
<=> a x bcd x abc = abc x 1001
<=> a x bcd = 1001
đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta tìm được a = 7 ( vì 1-> 9 chỉ có 1001 mới chia hết cho 7) => bcd = 143
vậy a = 7 ; b = 1 ; c = 4 ; d = 3
vậy abcd = 7143
Để chia hết cho 5 thi phải có c/s tận cùng là 0 hoặc 5.
Vậy ta có 2 trường hợp là :
Trường hợp 1:
13n + 8 = ...5
=> 13n = ...5 - 8 = ...7 .
Vậy n phải có tận cùng là 9 vì 13 . ...9 = ...7
Trường hợp 2:
13n + 8 =...0
=>13n = ...0 - 8 = ...2
Vậy n phải có tận cùng là 4 vì 13 . ...4 = ...2
Vậy n chỉ cần có c/s tận cùng là 9 hoặc 4 là thỏa mãn đề bài.
a) 12 = 3 x 4
1122 = 33 x 34
111222 = 333 x 334
...
Tới đây em có thể phát hiện ra quy luật.
b) \(a\times\overline{bcd}\times\overline{abc}=\overline{abcabc}\)
\(\Leftrightarrow a\times\overline{bcd}\times\overline{abc}=\overline{abc}\times1001\)
\(\Leftrightarrow a\times\overline{bcd}=1001\)
Do a là chữ số nên a chỉ có thể bằng 7. Khi đó \(\overline{bcd}=1001:7=143\)
Vậy a = 7, b = 1, c = 4 và d = 3.
a . bcd . abc = abcabc
(a . bcd) . abc = abc . 1001
a . bcd = 1001
Phân tích 1001 thành tích các thừa số nguyên tố: 1001 = 7 . 11 . 13
Suy ra a = 7; bcd = 11 . 13 = 143
Vậy a = 7; b = 1; c = 4; d = 3
a x bcd x abc = abcabc
a x bcd x abc = abc x 1001
⇒ a x bcd = 1001
⇒ a = 7 và bcd = 143