Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0
=> 6x2 < 74 => x2 < 74/6 <13
vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9
x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên
x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên
x2 = 4 => 5y2 = 50 => y2 = 10 => loại
x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);
vì y2
luôn lớn hơn hoặc bằng 0 nên 5.y
2
cũng luôn lớn hơn hoặc bằng 0
=> 6x2
< 74 => x2
< 74/6 <13
vì x nguyên nên x2
có thể nhận các giá trị 0; 1; 4; 9
x
2
= 0 => 5y2
= 74 => y2
= 74/5 loại vì y nguyên
x
2
= 1 => 5y2
= 68 => y2
= 68/5 loại vì y nguyên
x
2
= 4 => 5y2
= 50 => y2
= 10 => loại
x
2
= 9 => 5y2
= 20 => y2
= 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)
:3
\(x^3+3x=x^2y+2y+5\) \(\left(1\right)\)
\(\Leftrightarrow x^2y+2y=x^3+3x-5\)
\(\Leftrightarrow\left(x^2+2\right)y=x^3+3x-5\)
\(\Leftrightarrow y=\frac{x^3+3x-5}{x^2+2}=\frac{x^3+2x+x-5}{x^2+2}\)
\(=\frac{x\left(x^2+2\right)+\left(x-5\right)}{x^2+2}=\frac{x\left(x^2+2\right)}{x^2+2}+\frac{x-5}{x^2+2}\)
\(=x+\frac{x-5}{x^2+2}\)
Mà \(x,y\in Z\)
\(\Rightarrow\frac{x-5}{x^2+2}\in Z\)
\(\Rightarrow x-5⋮x^2+2\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)
\(\Rightarrow x^2-25⋮x^2+2\)
\(\Rightarrow x^2+2-27⋮x^2+2\)
\(\Rightarrow27⋮x^2+2\)
\(\Rightarrow\left(x^2+2\right)\inƯ\left(27\right)\)
Mà \(Ư\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Nhưng \(x^2+2\ge2\forall x\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)
Lập bảng giá trị :
\(x^2+2\) | \(3\) | \(9\) | \(27\) |
\(x^2\) | \(1\) | \(7\) | \(25\) |
\(x\) | \(\pm1\) | \(\sqrt{7}\) | \(\pm5\) |
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\) \(\left(2\right)\)
Thay \(\left(2\right)\)vào \(\left(1\right)\)ta có :
+) Với \(x=-1\Rightarrow y=-3\) ( thõa mãn )
+) Với \(x=1\Rightarrow y=-\frac{1}{3}\) ( loại )
+) Với \(x=-5\Rightarrow y=-\frac{145}{27}\) ( loại )
+) Với \(x=5\Rightarrow y=5\) ( thõa mãn )
Vậy các số nguyên \(\left(x,y\right)\)cần tìm là : \(\left(-1;-3\right)\) ; \(\left(5;5\right)\)
Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)
Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)
Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)