Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x;y\ge\frac{1}{2}\)
Vì x,y khác 0 nên cùng chia 2 vế của pt bđ cho xy ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Ta có: \(\sqrt{2y-1}\le y\)(1)( \(y\ge\frac{1}{2}\))
Thật vậy \(\left(1\right)\Leftrightarrow2y-1\le y^2\)
\(\Leftrightarrow y^2-2y+1\ge0\)
\(\Leftrightarrow\left(y-1\right)^2\ge0\)(Luôn đúng)
Nên (1) đúng \(\Rightarrow\frac{\sqrt{2y-1}}{y}\le1\)
Tương tự \(\frac{\sqrt{2x-1}}{x}\le1\)
Do đó \(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}\le1+1=2\)
Dấu "=" xảy ra <=> x = y = 1 (T/M)
Vậy x = y = 1
áp dụng bdt amgm ta có
\(\sqrt{x}+\frac{1}{\sqrt{x}}\)+\(4\sqrt{y}+\frac{1}{\sqrt{y}}\) \(\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}\) =6
dau = xay ra khi \(\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
kl (x;y ) =(1;1/4)
ĐKXĐ: \(x;y>0\)
\(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)
Á dụng bđt Cauchy ta có :
\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)
\(4\sqrt{y}+\frac{1}{\sqrt{y}}\ge2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}=4\)
\(\Rightarrow\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge6\) Hay \(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)
\(ĐK:x\ge\frac{1}{2};y\ge0\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)
\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)
Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)
\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)
Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)
Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)
Suy ra (3) vô nghiệm
Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
\(\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)
\(\left(\sqrt{x+y+3}\right)^2=\left(\sqrt{x}+\sqrt{y}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\left(1-\sqrt{x}\right)\left(\sqrt{y}-1\right)=-2\)
Xong
Sai nha! Đề cho x, y nguyên chứ không cho căn(x), căn(y) nguyên.
\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)
Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)
Cộng theo vế ta có Đpcm
Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8