K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

http://d.violet.vn//uploads/resources/601/2228122/preview.swf

21 tháng 6 2016

Dạo này cậu học Toán 8 nâng cao hay trong sgk vậy?

21 tháng 6 2016

toán cơ bản

23 tháng 9 2018

Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)

<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)

<=> \(8x^3+8x^3-16x^3+16xy=32\)

<=> \(16xy=32\)

<=> \(xy=2\)

=> x, y cùng dấu (vì \(xy>0\))

Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)

19 tháng 3 2017

\(2x^2+3y^2+4x=19\)

\(2x^2+4x=19-3y^2\)

\(2\left(x+1\right)^2=3\left(7-y^2\right)\)

\(2\left(x+1\right)^2⋮2\) nên \(3\left(7-y^2\right)⋮2\) hay \(7-y^2⋮2\Rightarrow y^2\) lẻ(1)

Ta có: \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\Rightarrow y^2\le7\)\(\Rightarrow y^2\in\left\{1;4\right\}\)(2)

Từ (1) và (2), ta suy ra: \(y^2=1\)\(\Rightarrow y\in\left\{-1;1\right\}\)

Ta có: \(2\left(x+1\right)^2=3\left(7-y^2\right)\)

\(2\left(x+1\right)^2=18\)

\(\left(x+1\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{matrix}\right.\)

Các cặp số nguyên \(\left(x;y\right)=\left\{\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\right\}\)

16 tháng 3 2019

Ta có: \(2x^2+3y^2+4x=19\)

\(\Leftrightarrow\) \(2x^2+4x=19-3y^2\)

\(\Leftrightarrow\) \(2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow\) \(2\left(x+1\right)^2=3\left(7-y^2\right)\) \(\left(\text{*}\right)\)

Vì \(2\left(x+1\right)^2\) chia hết cho \(2\) nên \(3\left(7-y^2\right)\) chia hết cho \(2\), hay \(7-y^2\) chia hết cho \(2\) , hay \(y^2\) lẻ \(\left(1\right)\)

Lại có: \(7-y^2\ge0\) (do \(\left(x+1\right)^2\ge0\)) nên \(y^2\le7\) (với \(y\in Z\) ), tức là \(y^2\in\left\{1;4\right\}\) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) , suy ra \(y^2=1\) \(\Rightarrow\) \(y\in\left\{-1;1\right\}\)

Khi đó, phương trình \(\left(\text{*}\right)\) sẽ có dạng \(2\left(x+1\right)^2=18\)

\(\Leftrightarrow\left(x+1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy, các cặp nghiệm nguyên phải tìm: \(\left(x;y\right)=\left\{\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\right\}\) (thỏa mãn \(x,y\in Z\) )

NV
16 tháng 3 2019

\(2\left(x+1\right)^2+3y^2=21\Rightarrow y^2=7-\frac{2\left(x+1\right)^2}{3}\le7\)

\(\Rightarrow y^2=\left\{0;1;4\right\}\)

- \(y^2=0\Rightarrow y=0\Rightarrow\left(x+1\right)^2=\frac{21}{2}\) (ko có x nguyên thỏa mãn)

- \(y^2=1\Rightarrow y=\pm1\Rightarrow\left(x+1\right)^2=\frac{21-3y^2}{2}=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

- \(y^2=4\Rightarrow\left(x+1\right)^2=\frac{21-3y^2}{2}=\frac{9}{2}\) (ko có x nguyên thỏa mãn)

Vậy \(\left(x;y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\)

7 tháng 4 2020

3x^2-y^2-2xy-2x-2y+40=0

<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0

Đặt x-y=a: 3x+y=b

PT<=>ab+a-b-1=-41

<=>(b+1)(a-1)=-41

  Đến đây bạn tự giải nốt nha. cho xin phát :)

7 tháng 4 2020

nguyễn trí tâm tks bn

10 tháng 2 2016

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)

10 tháng 2 2016

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)