Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)
<=> \(8x^3+8x^3-16x^3+16xy=32\)
<=> \(16xy=32\)
<=> \(xy=2\)
=> x, y cùng dấu (vì \(xy>0\))
Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)
\(2x^2+3y^2+4x=19\)
\(2x^2+4x=19-3y^2\)
\(2\left(x+1\right)^2=3\left(7-y^2\right)\)
Vì \(2\left(x+1\right)^2⋮2\) nên \(3\left(7-y^2\right)⋮2\) hay \(7-y^2⋮2\Rightarrow y^2\) lẻ(1)
Ta có: \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\Rightarrow y^2\le7\)\(\Rightarrow y^2\in\left\{1;4\right\}\)(2)
Từ (1) và (2), ta suy ra: \(y^2=1\)\(\Rightarrow y\in\left\{-1;1\right\}\)
Ta có: \(2\left(x+1\right)^2=3\left(7-y^2\right)\)
\(2\left(x+1\right)^2=18\)
\(\left(x+1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{matrix}\right.\)
Các cặp số nguyên \(\left(x;y\right)=\left\{\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\right\}\)
Ta có: \(2x^2+3y^2+4x=19\)
\(\Leftrightarrow\) \(2x^2+4x=19-3y^2\)
\(\Leftrightarrow\) \(2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow\) \(2\left(x+1\right)^2=3\left(7-y^2\right)\) \(\left(\text{*}\right)\)
Vì \(2\left(x+1\right)^2\) chia hết cho \(2\) nên \(3\left(7-y^2\right)\) chia hết cho \(2\), hay \(7-y^2\) chia hết cho \(2\) , hay \(y^2\) lẻ \(\left(1\right)\)
Lại có: \(7-y^2\ge0\) (do \(\left(x+1\right)^2\ge0\)) nên \(y^2\le7\) (với \(y\in Z\) ), tức là \(y^2\in\left\{1;4\right\}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) , suy ra \(y^2=1\) \(\Rightarrow\) \(y\in\left\{-1;1\right\}\)
Khi đó, phương trình \(\left(\text{*}\right)\) sẽ có dạng \(2\left(x+1\right)^2=18\)
\(\Leftrightarrow\left(x+1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy, các cặp nghiệm nguyên phải tìm: \(\left(x;y\right)=\left\{\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\right\}\) (thỏa mãn \(x,y\in Z\) )
\(2\left(x+1\right)^2+3y^2=21\Rightarrow y^2=7-\frac{2\left(x+1\right)^2}{3}\le7\)
\(\Rightarrow y^2=\left\{0;1;4\right\}\)
- \(y^2=0\Rightarrow y=0\Rightarrow\left(x+1\right)^2=\frac{21}{2}\) (ko có x nguyên thỏa mãn)
- \(y^2=1\Rightarrow y=\pm1\Rightarrow\left(x+1\right)^2=\frac{21-3y^2}{2}=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
- \(y^2=4\Rightarrow\left(x+1\right)^2=\frac{21-3y^2}{2}=\frac{9}{2}\) (ko có x nguyên thỏa mãn)
Vậy \(\left(x;y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\)
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
\(\Leftrightarrow3y^2+2x^2+4x=19\)
\(\Rightarrow3y^2+2x^2+4x-19=0\)
\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)
\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)
=> Nghiệm đc xác định dưới dạng hàm ẩn
\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)
\(\Leftrightarrow3y^2+2x^2+4x=19\)
\(\Rightarrow3y^2+2x^2+4x-19=0\)
\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)
\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)
=> Nghiệm đc xác định dưới dạng hàm ẩn
\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)
http://d.violet.vn//uploads/resources/601/2228122/preview.swf