Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}=\frac{1}{x-y}.\frac{2\left(x-y\right)}{x+2}=\frac{2}{x+2}\)
Để B là số nguyên
=> \(\frac{2}{x+2}\)là số nguyên
=> \(2⋮x+2\)
=> \(x+2\inƯ\left(2\right)\)
=> \(x+2\in\left\{1;-1;2;-2\right\}\)
=> \(x\in\left\{-1;-3;0;-4\right\}\)
Vậy các cặp (x ;y) thỏa mãn là (-1 ; y) ; (-3 ; y) ; (0 ; y) ; (-4 ; y) với mọi y nguyên
\(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)
\(\Rightarrow\frac{1}{b}=\frac{3}{4}-\frac{a}{4}\)
\(\Rightarrow\frac{1}{b}=\frac{3-a}{4}\)
Áp dụng công thức tích chung tỷ = tích ngoại tỷ
=> b.(3 - a) = 1 . 4
=> 3.b - ab = 4
=> 3.b = 4 - a.b
1) x + y + xy = 3
<=> x + y + xy + 1 = 4
<=> x(y + 1) + (y + 1) = 4
<=> (x + 1)(y + 1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
* x + 1 = 4 và y + 1 = 1 <=> (x ; y) = (3 ; 0)
* x + 1 = -4 và y + 1 = -1 <=> (x ; y) = (-5 ; -2)
* x + 1 = 1 và y + 1 = 4 <=> (x ; y) = (0 ; 3)
* x + 1 = -1 và y + 1 = -4 <=> (x ; y) = (-2 ; -5)
* x + 1 = 2 và y + 1 = 2 <=> (x ; y) = (1 ; 1)
* x + 1 = -2 và y + 1 = -2 <=> (x ; y) = (-3 ; -3)
Vậy phương trình có 6 nghiệm nguyên là (3 ; 0) ; (0 ; 3) ; (-2 ; -5); (-5 ; -2) ; (1;1) và (-3 ; -3)
\(x-y+2xy=3\)
\(\Rightarrow2x-2y+4xy=6\)
\(\Rightarrow2x-2y+4xy-1=5\)
\(\Rightarrow\left(2x+4xy\right)-\left(2y+1\right)=5\)
\(\Rightarrow2x\left(2y+1\right)-1\left(2y+1\right)=5\)
\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=5\)
\(x-y+2xy=3\)
\(\Leftrightarrow2\left(x-y+2xy\right)=2\times3\)
\(\Leftrightarrow2x-2y+4xy=6\)
\(\Leftrightarrow2x-2y+4xy-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow2x\left(2y+1\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)
Bạn tự lập bảng để tìm nghiệm nhé
\(\frac{-11}{x}=\frac{y}{3}\)
\(\Rightarrow xy=3.\left(-11\right)\)
\(xy=-33\)
\(x;y\in\text{Ư}\left(-33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)
Lập bảng giá trị
Vậy có các cặp số x;y thỏa mãn là: \(\left(-1;33\right);\left(1;-33\right);\left(-3;11\right);\left(3;-11\right);\left(11;-3\right);\left(-11;3\right);\left(33;-1\right)\left(-33;1\right)\)