K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

a, \(\frac{2b+1}{10}=\frac{1}{a}\)

  \(\Leftrightarrow\left(2b+1\right)a=10\)

  \(\Leftrightarrow2ab+a=10\)

  \(\Leftrightarrow2ab=10-a\)

  \(\Rightarrow\begin{cases}a=2\\b=2\end{cases}\)

b, \(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\)

  \(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)

  \(\Leftrightarrow\left(a-2\right)b=12\)

   \(\Rightarrow a-2=12b\)

   Bạn thế a vô rồi tính b chẳng hạn : \(\begin{cases}a=14\\b=1\end{cases}\)

17 tháng 9 2017

Ta có:

\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\)  và \(y-x=5\)

Áp dụng tính chất của dạy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)

\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)

Vậy \(x=20;y=25\)

b)

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)

\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)

Vậy   \(a=10,5;b=14;c=17,5\)

17 tháng 9 2017

Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)

thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15

Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)

=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{1}=\dfrac{b}{-3}=\dfrac{a-2b}{1-2\cdot\left(-3\right)}=\dfrac{14}{7}=2\)

Do đó: a=2; b=-6

3 tháng 12 2021

\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)

\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)

Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)

\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)

6 tháng 7 2021

a) \(\frac{2}{-5}< \frac{x}{10}< \frac{1}{4}\)

\(\Rightarrow\frac{-8}{20}< \frac{2x}{20}< \frac{5}{20}\)

\(\Rightarrow-8< 2x< 5\)

\(\Rightarrow-4< x< 2,5\)

Vì \(x\inℤ\) nên \(x\in\left\{-3;-2;-1;0;1;2\right\}\)

b) \(-\frac{2}{3}< \frac{x}{8}< -\frac{1}{6}\)

\(\Rightarrow\frac{-16}{24}< \frac{3x}{24}< \frac{-4}{24}\)

\(\Rightarrow-16< 3x< -4\)

\(\Rightarrow3x\in\left\{-15;-12;-9;-6\right\}\)

\(\Rightarrow x\in\left\{-5;-4;-3;-2\right\}\)

a) x=1

b)x=-3,-2

a) để x nguyên

=>13 chia hết n+2

=>n+2= 1 hoặc -1 hoặc -13 hoặc    13

=>n=    -1 hoặc -3 hoặc  -15 hoặc    11