Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+15^y=2^z\)(\(z\ge4\))
Do VT chẵn và 15 lẻ nên x lẻ
Khi đó x có dạng 2k+1(\(k\in N\))
\(\Rightarrow x^2\equiv1\left(mod4\right)\)
TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)
\(\Rightarrow VT\equiv2\left(mod4\right)\)
\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)
Mà z>=4 => Loại TH này
\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)
Vậy y lẻ.
TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)
\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)
Vậy ko có x,y,z là số nguyên dương thỏa mãn
@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.
Do x nguyên dương
TH1:x=1 Giả sử y=<z
PT<=>2(y+z)=yz-1<=>...<=>(y-2)(z-2)=5
Giải pt nghiệm nguyên dương được nghiệm (1;3;7)
TH2:x>=2
2(y+z)>=2(yz-1)
<=>yz-y-z =<1
<=>(y-1)(z-1) =<2 (1)
Do y,z nguyên dương nên y-1 và z-1 lớn hơn hoặc =0
=>(y-1)(z-1)>=0
Kết hợp với (1) có (y-1)(z-1)=0
hoặc (y-1)(z-1)=1
hoặc (y-1)(z-1)=2
Giải các pt nghiệm nguyên trên ta
KL: pt có các nghiệm (3;5;1),(6;2;1),(4;3;1),(3;1;5),(6;1;2),
(4;1;3),(2;2;3),(2;3;2),(1;3;7),(1;7;3...
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
Với mọi x;y;z ta luôn có:
\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)
\(\Leftrightarrow2+2xy-2x-2y\ge z\)
\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)