Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
\(x:y=2:3;x:z=4:3\)và \(x-y-z=50\)
Vì \(x:y=2:3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)
Vì \(x:z=4:3\)
\(\Rightarrow\frac{x}{4}=\frac{z}{3}\)\(\Rightarrow\frac{x}{8}=\frac{z}{6}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{6}=\frac{x-y-z}{8-12-6}=\frac{50}{-10}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5.5=-40\\y=-5.12=-60\\z=-5.6=-30\end{cases}}\)
Vậy ...
#)Giải :
Ta xét :
x,y tỉ lệ thuận với 2 và 3 \(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
x,z tỉ lệ nghịch với 4 và 6 \(\Rightarrow4x=3z\Rightarrow\frac{x}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{8}\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\Rightarrow\frac{x-y+z}{6-9+8}=\frac{50}{5}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=10\\\frac{y}{9}=10\\\frac{z}{8}=10\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=90\\z=80\end{cases}}}\)
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
1: Hệ số tỉ lệ của y đối với x là:
\(k=x\cdot y=6\cdot3=18\)
2: y tỉ lệ thuận với x theo hệ số tỉ lệ H
=>\(y=x\cdot H\)
x tỉ lệ thuận với z theo hệ số tỉ lệ K
=>\(x=K\cdot z\)
=>\(y=x\cdot H=K\cdot z\cdot H=z\cdot KH\)
=>y và z tỉ lệ thuận vói nhau theo hệ số tỉ lệ là \(K\cdot H\)
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(3\)nên \(\frac{x}{2}=\frac{y}{3}\).
\(x\)và \(z\)tỉ lệ nghịch với \(4\)và \(3\)nên \(\frac{x}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}\Leftrightarrow\frac{x}{3}=\frac{z}{4}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{3}=\frac{z}{4}\end{cases}}\Leftrightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{9}=\frac{z}{8}=\frac{x-y+z}{6-9+8}=\frac{50}{5}=10\)
\(\Leftrightarrow\hept{\begin{cases}x=10.6=60\\y=10.9=90\\z=10.8=80\end{cases}}\)