Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:a2+b2+c2+d2+1=a+b+c+d
<=>4a2+4b2+4c2+4d2+4=4a+4b+4c+4d
<=>(4a2- 4a+1)+(4b2- 4b+1)+(4c2- 4c+1)+(4d2- 4d+1)=0
<=>(2a-1)2+(2b-1)2+(2c-1)2+(2d-1)2=0
MÀ CẢ 4 SỐ HẠNG TRÊN ĐỀU LỚN HƠN HOẶC BẰNG 0
=>DẤU BẰNG XẢY RA KHI a=b=c=d=1/2
P/s tham khảo bài mình nhé
Bài 1 :
\(xy+2=2x+y\)
=> \(xy-y-\left(2x-2\right)=0\)
=> \(y\left(x-1\right)-2\left(x-1\right)=0\)
=> \(\left(y-2\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}y-2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=2\\x=1\end{cases}}}\)
=> \(\orbr{\begin{cases}y=2;x\in Z\\x=1;y\in Z\end{cases}}\)
Ta thấy : a+b=c+d => \(\left(a+b\right)^2=\left(c+d\right)^2\)
<=> \(a^2+2ab+b^2=c^2+2cd+d^2\)(1)
Mà \(a^2+b^2=c^2+d^2\)(2)
Từ (1)(2) => 2ab=2cd => ab=cd => \(\frac{a}{d}=\frac{c}{b}=k\)
=> a=dk; c=bk
Ta xét : \(a^2+b^2=c^2+d^2\)
<=> \(\left(dk\right)^2+b^2=\left(bk\right)^2+d^2\)
<=> \(d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)
<=> \(\left(d^2-b^2\right)\left(k^2-1\right)=0\)
=>\(\left[\begin{array}{nghiempt}d^2-b^2=0\\k^2-1=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}d=\pm b\\k=\pm1\end{array}\right.\)
Th1 :d=\(\pm b\) mà \(\frac{a}{d}=\frac{c}{b}\)=> a=\(\pm c\)
=> \(d^{2002}=b^{2002};a^{2002}=c^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(3)
Th2: k=\(\pm1\) => a\(=\pm d;c=\pm b\)
=> \(a^{2002}=d^{2002};c^{2002}=b^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(4)
Từ (3)(4)=> đpcm
t
Có a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
- Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2002 = c2002 và d2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
- Nếu a \(\ne\) c
=> a - c = d - b (\(\ne\) 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + b (1)
Mà a + b = c + d (2)
Lấy (1) + (2) ta được:
2a + b + c = b + c + 2d
=> 2a = 2d
=> a = d
=> c = b
=> a2002 = d2002 và c2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Ta có: a+b=c+d
=>a-c=d-b
Lại có:a2+b2=c2+d2
=>a^2-c^2=d^2-b^2
=>(a-c*(a+c
a+b=c+d
<=>(a+b)2=(c+d)2
<=>a2+b2+2ab=c2+d2+2cd
<=>2ab=2cd<=>ab=cd <=> \(\frac{a}{d}=\frac{c}{b}\)
đặt \(\frac{a}{d}=\frac{c}{b}=k=>a=dk;c=bk\)
có a2+b2=c2+d2
<=>(dk)2+b2=(bk)2+d2
<=>(dk)2-d2=(bk)2-b2
<=>d2(k2-1)-b2(k2-1)=0
<=>(k2-1)(d2-b2)=0
<=>(k-1)(k+1)(d-b)(d+b)=0
<=>k=-1;k=1;d=b;d=-b
Xét:
+) d=+b có \(\frac{a}{d}=\frac{c}{b}\) => a=+c
=>d2013=b2013;a2013=c2013;d=-b2013
đến đây hơi kì ,âm rồi
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)