K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).

Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)

29 tháng 11 2017

TA CÓ:a2+b2+c2+d2+1=a+b+c+d

       <=>4a2+4b2+4c2+4d2+4=4a+4b+4c+4d

       <=>(4a2- 4a+1)+(4b2- 4b+1)+(4c2- 4c+1)+(4d2- 4d+1)=0

       <=>(2a-1)2+(2b-1)2+(2c-1)2+(2d-1)2=0

MÀ CẢ 4 SỐ HẠNG TRÊN ĐỀU LỚN HƠN HOẶC BẰNG 0

=>DẤU BẰNG XẢY RA KHI a=b=c=d=1/2

P/s tham khảo bài mình nhé

11 tháng 7 2017

Bài 1 :

\(xy+2=2x+y\)

=> \(xy-y-\left(2x-2\right)=0\)

=> \(y\left(x-1\right)-2\left(x-1\right)=0\)

=> \(\left(y-2\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}y-2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=2\\x=1\end{cases}}}\)

=> \(\orbr{\begin{cases}y=2;x\in Z\\x=1;y\in Z\end{cases}}\)

27 tháng 6 2016

Ta thấy : a+b=c+d   => \(\left(a+b\right)^2=\left(c+d\right)^2\)

                              <=> \(a^2+2ab+b^2=c^2+2cd+d^2\)(1)

Mà \(a^2+b^2=c^2+d^2\)(2)

Từ (1)(2) => 2ab=2cd => ab=cd => \(\frac{a}{d}=\frac{c}{b}=k\)

=> a=dk; c=bk

Ta xét : \(a^2+b^2=c^2+d^2\)

<=> \(\left(dk\right)^2+b^2=\left(bk\right)^2+d^2\)

<=> \(d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)

<=> \(\left(d^2-b^2\right)\left(k^2-1\right)=0\)

=>\(\left[\begin{array}{nghiempt}d^2-b^2=0\\k^2-1=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}d=\pm b\\k=\pm1\end{array}\right.\)

Th1 :d=\(\pm b\)  mà \(\frac{a}{d}=\frac{c}{b}\)=> a=\(\pm c\)

=> \(d^{2002}=b^{2002};a^{2002}=c^{2002}\)

=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(3)

Th2: k=\(\pm1\) => a\(=\pm d;c=\pm b\)

=> \(a^{2002}=d^{2002};c^{2002}=b^{2002}\)

=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(4)

Từ (3)(4)=> đpcm

t

 

27 tháng 6 2016

Có a+ b= c2 + d2

=> a2 - c2 = d2 - b2

=> (a - c)(a + c) = (d - b)(d + b)

Mà a + b = c + d

=> a - c = d - b

 - Nếu a = c

=> a - c = d - b = 0

=> d = b

=> a2002 = c2002 và d2002 = b2002

=> a2002 + b2002 = c2002 + d2002 (Đpcm)

 - Nếu a \(\ne\) c

=> a - c = d - b (\(\ne\) 0)

=> d \(\ne\) b

Có (a - c)(a + c) = (d - b)(d + b)

=> a + c = d + b (1)

Mà a + b = c + d (2)

Lấy (1) + (2) ta được:

2a + b + c = b + c + 2d

=> 2a = 2d

=> a = d 

=> c = b

=> a2002 = d2002 và c2002 = b2002

=> a2002 + b2002 = c2002 + d2002 (Đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

28 tháng 11 2016

Ta có: a+b=c+d

=>a-c=d-b

Lại có:a2+b2=c2+d2

=>a^2-c^2=d^2-b^2

=>(a-c*(a+c

29 tháng 11 2016

a+b=c+d

<=>(a+b)2=(c+d)2

<=>a2+b2+2ab=c2+d2+2cd

<=>2ab=2cd<=>ab=cd <=> \(\frac{a}{d}=\frac{c}{b}\)

đặt \(\frac{a}{d}=\frac{c}{b}=k=>a=dk;c=bk\)

có a2+b2=c2+d2

<=>(dk)2+b2=(bk)2+d2

<=>(dk)2-d2=(bk)2-b2

<=>d2(k2-1)-b2(k2-1)=0

<=>(k2-1)(d2-b2)=0

<=>(k-1)(k+1)(d-b)(d+b)=0

<=>k=-1;k=1;d=b;d=-b

Xét:

+) d=+b có \(\frac{a}{d}=\frac{c}{b}\) => a=+c

=>d2013=b2013;a2013=c2013;d=-b2013

đến đây hơi kì ,âm rồi