Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD: Ta có A+B=(a+b-5)+(1-b-c)
=a+b-5+1-b-c
=a+b-b+1-5-c
=a-4-c
C+D=(b-c-4)+b-4
=b-c-4+b-4
=2b-c-8
Xét hiệu ( A+B).(C+D)
=(a-4-c)-(2b-c-8)
=a-4-c-2b+c+8
=a-2b+4
Nếu a-2b+4=0 thì A+B=C+D
Nếu ...........<0............<C+D
Nếu.............>0...........>C+D
Nguyễn Ngô Gia Hân:
1.Tìm x
\(^{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+0+0+0+...+0-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{30}}\)
\(^{\Leftrightarrow x+1=30}\)
\(^{\Leftrightarrow x=29}\)
Vậy x =29
Làm đc mỗi bài này thoi, tham khảo nha ~~
Bài 1 có rồi mk làm mấy bài sau nhé
Bài 2 :
Ta có :
\(3a=4b\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\) và \(b-a=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{a}{4}=\frac{b-a}{3-4}=\frac{-10}{-1}=10\)
Do đó :
\(\frac{a}{4}=10\)\(\Rightarrow\)\(a=10.4=40\)
\(\frac{b}{3}=10\)\(\Rightarrow\)\(b=10.3=30\)
Vậy \(a=40\) và \(b=30\)
Chúc bạn học tốt ~
a. Ta có :
(b + c + d)+(a + c + d)+(a + b + d)+(a + b + c) = 3(a + b + c + d)
⇒3(a + b + c + d)=1+2+3+4=10
⇒a + b + c + d = \(\dfrac{10}{3}\)
⇒a = (a + b + c + d) - (b + c + d) =\(\dfrac{10}{3}\) - 1= \(\dfrac{7}{3}\)
Tương tự ,ta có :
b = \(\dfrac{10}{3}\) - 2= \(\dfrac{4}{3}\) ; c = \(\dfrac{10}{3}\) - 3= \(\dfrac{1}{3}\)
và d = \(\dfrac{10}{3}\) - 4= \(-\dfrac{2}{3}\)
Vậy các số a,b,c,d lần lượt là \(\dfrac{7}{3}\) ;\(\dfrac{4}{3}\) ;\(\dfrac{1}{3}\) và \(-\dfrac{2}{3}\)
Ý b) tương tự như trên.
b. Ta cho: a+b+c+d=1(1)
a+c+d=5(2)
a+b+d=3(3)
a+b+c=6(4)
Từ (1) và (2) suy ra: \(b=1-5=-4\left(5\right)\)
Từ (1) và (3) suy ra: \(c=1-3=-2\left(6\right)\)
Từ (1) và (4) suy ra:\(d=1-5=-5\left(7\right)\)
Từ (5);(6) và (7) suy ra:\(a=1-\left[\left(-4\right)+\left(-2\right)+\left(-5\right)\right]\)
\(=1-\left(-11\right)\)
\(=1+11\)
\(=12\)
Vậy....