Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a = 2b => a/2 = b/3 => \(\frac{a}{10}=\frac{b}{15}\) (1)
7b = 5c => b/5 = c/7 => \(\frac{b}{15}=\frac{c}{21}\) (2)
Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{10-15+21}=\frac{32}{16}=2\)
=> a = 2.10 = 20
=> b = 2.15 = 30
=> c = 2.21 = 42
Tich đúng cho mình nha bạn
5a = 2b => a/2 = b/5 (2)
7b = 5c => b/5 = c /7 (1)
Từ(1) và (2) => a/2 = b/5 =c/7
Áp dụng dãy tỉ số (=) ta có:
a/2 = b/5 = c/7 = a-b+c/2-5+7 = 32/4 = 8
=> a = 8.2 = 16
=> b = 8.5 = 40
=> c = 8.7 = 56
5a=2b;7b-5c va a-b+c=32
\(5a=2b\Rightarrow\frac{a}{2}=\frac{b}{5}\)
\(7b=5c\Rightarrow\frac{b}{5}=\frac{c}{7}\)
\(\frac{a}{2}=\frac{b}{5};\frac{b}{5}=\frac{c}{7}\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{32}{4}=8\)
Suy ra : \(\frac{a}{2}=8\Rightarrow a=8.2=16\)
\(\frac{b}{5}=8\Rightarrow b=8.5=40\)
\(\frac{c}{7}=8\Rightarrow c=8.7=56\)
Vậy : a=16 ; b=40 và z=56
b) 3a = 2b; 7b = 5c
=> a/2 = b/3; b/5 = c/7
=> a/10 = b/15 = c/21
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{10-15+21}=\frac{32}{16}=2\)
suy ra; a/10 = 2 => a = 10 * 2 = 20
b/15 = 2 => b = 15 * 2 = 30
c/21 = 2 => c = 21 * 2 = 42
a)
\(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)
\(\frac{a}{c}=\frac{1}{2}\Rightarrow\frac{a}{1}=\frac{c}{2}\Rightarrow\frac{a}{2}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\frac{a^3}{8}=\frac{b^3}{27}=\frac{c^3}{64}=\frac{a^3+b^3+c^3}{8+27+64}=\frac{99}{99}=1\)
Sau đó tính như bình thường thôi bạn
Học tốt~
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
2a=3b nên a/3=b/2
5b=7c nên b/7=c/2
=>a/21=b/14=c/4
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{4}=\dfrac{5a-7b+5c}{5\cdot21-7\cdot14+5\cdot4}=\dfrac{36}{27}=\dfrac{4}{3}\)
=>a=28; b=56/3; c=16/3
3a+5c=7b+30
=>3a+5c-7b=30
\(2a=3b=>\frac{a}{3}=\frac{b}{2}=>\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
\(5b=7c=>\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
\(=>\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
\(=>\frac{a}{21}=2=>a=21.2=42\)
\(=>\frac{b}{14}=2=>b=14.2=28\)
\(=>\frac{c}{10}=2=>c=10.2=20\)
Vậy a=42,b=28,c=20.
Vì 3a=12b=>\(\frac{a}{12}=\frac{b}{3}\)
=>\(\frac{a}{60}=\frac{b}{15}\)
Vì 7b=5c=>\(\frac{b}{5}=\frac{c}{7}\)
=>\(\frac{b}{15}=\frac{c}{21}\)
=>\(\frac{a}{60}=\frac{b}{15}=\frac{c}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
=>\(\frac{a}{60}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{60-15+21}=\frac{16}{33}\)
=>\(\frac{a}{60}=\frac{16}{33}=>a=16.60:33=\frac{320}{11}\)
=>\(\frac{b}{15}=\frac{16}{33}=>b=15.16:33=\frac{80}{11}\)
=>\(\frac{c}{21}=\frac{16}{33}=>c=16.21:33=\frac{112}{11}\)
Vậy a=\(\frac{320}{11}\)
b=\(\frac{80}{11}\)
c=\(\frac{112}{11}\)