Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
với a+b+c khác 0
=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2
=> A=1/2
với a+b+c =0
=>a+b= -c
b+c= -a
a+c= -b
thay vào A ta được :
=>A= a/-a = b/-b = c/-c=-1
=>A= -1
vậy A= -1 hoặc 1/2
1)a,b,c có khác 0 không bạn
nếu khác 0 thì tớ mới làm được
a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
b) \(\text{Để n nguyên thì P phải nguyên} \)
\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)
=> n-1 là ước của 1
=> n-1={-1;1)
=> n={0;2)
c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
b)\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
P là số nguyên \(\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)
\(\Leftrightarrow n-1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{0;2\right\}\)
c)\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow12x-8y=0,6z-12x=0,8y-6z=0\)
\(\Rightarrow12x=8y,6z=12x,8y=6z\)
\(\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho mình sửa lại đề câu 1b: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
\(\frac{2x-7}{14}=\frac{1}{y+1}\)
\(TH1:\hept{\begin{cases}2x-7=7\\y+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-7=-7\\y+1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
nhớ cho