Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
(2x-5)(3x+b)=ax2+x+c
<=> 6x2+2bx-15x-5b=ax2+x+c
Đồng nhất hệ số ta được
\(\left\{{}\begin{matrix}a=6\\2b-15=1\\-5b=c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\-40\end{matrix}\right.\)
Các câu sau giải tương tự
Phá tung cái ngoặc ra thôi mà nhỉ?
a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)
Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c
a) (ax - 3)(x2 + bx + 9) = x3 - 27
=> ax3 + abx2 + 9ax - 3x2 - 3bx - 27 = x3 - 27
=> ax3 + x2(ab - 3) - 3x(3a - b) = x3
=> \(\hept{\begin{cases}a=1\\ab-3=0\\3a-b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=3\end{cases}}\)
b) (ax + b)(x2 - x + 1) - c(2x - 1) = x3 - 3x2 + x - 1
=> ax3 - ax2 + ax + bx2 - bx + b - 2cx + c = x3 - 3x2 + x - 1
=> ax3 - x2(a - b) + x(a - b + 2c) + (b - c) = x3 - 3x2 + x - 1
=> a = 3 ; \(\hept{\begin{cases}a-b=3\\a-b+2c=1\\b-c=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=0\\c=-1\end{cases}}\)
a) ( ax - 3 )( x2 + bx + 9 ) = x3 - 27
<=> ( ax - 3 )( x2 + bx + 9 ) = ( x - 3 )( x2 + 3x + 9 )
Đồng nhất hệ số ta được a = 1 ; b = 3
b) ( ax + b )( x2 - x + 1 ) - c( 2x - 1 ) = x3 - 3x2 + x - 1
<=> ax( x2 - x + 1 ) + b( x2 - x + 1 ) - 2cx + c = x3 - 3x2 + x - 1
<=> ax3 - ax2 + ax + bx2 - bx + b - 2cx + c = x3 - 3x2 + x - 1
<=> ax3 - ( a - b )x2 + ( a - b - 2c )x + ( b + c ) = x3 - 3x2 + x - 1
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a=1\\a-b=3\\a-b-2c=1\end{cases}};b+c=-1\)
=> a = 1 ; b = -2 ; c = 1