Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + Nếu k = 0 thì A = 1 + 1 + 1 = 3, không là số chính phương ( loại)
+ Nếu k > 0, do k chẵn nên k = 2n (n thuộc N*)
A = 192n + 52n + 19952n
Do (19;3)=1; (5;3)=1 nên (192n;3)=1; (52n;3)=1
Mà 192n và 52n là số chính phương suy ra192n chia 3 dư 1; 52n chia 3 dư 1
Mà 19952n chia hết cho 3 do 1995 chia hết cho 3
Do đó A chia 3 dư 2, không là số chính phương (đpcm)
b) Dễ thấy 20042004 chia hết cho 3 do 2004 chia hết cho 3
2003 chia 3 dư 2
=> B chia 3 dư 2, không là số chính phương (đpcm)
Vì \(\hept{\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\Rightarrow\hept{\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\Rightarrow}\hept{\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}}}\)
=> (40a+24b)−(39a+24b)⋮1995
=> 40a+24b−39a−24b⋮1995
=> b⋮1995(1)
=> 8b⋮1995
Mặt khác 13a+8b⋮1995
=> 13a⋮1995Mà (13;1995)=1
=> a⋮1995(2)Từ (1) và (2)
=> a,b⋮1995(đpcm)
Vì 5a+3b \(⋮\)1995=>8(5a+3b) ⋮ 1995=> 40a+24b ⋮ 1995 (1)
Vì 13a+8b⋮ 1995=>3(13a+8b)⋮ 1995=>39a+24b⋮ 1995 (2)
từ (1),(2) => 40+24b -39a -24b ⋮ 1995 => a ⋮ 1995
bạn làm tương tự với b nhé
a) Với k chẵn, 19k chia cho 4 dư 1, 5k chia cho 4 dư 1, 1995k chia cho 4 dư 1, 1996k chia hết cho 4.
Do đó, với k chẵn thì M = 19k + 5k + 1995k + 1996k chia cho 4 dư 3. Suy ra M không là số chính phương.
b) N chia cho 4 dư 3 => N không là số chính phương
B (1995)={0;1995;3990;...}
Vì a+b=1995 nên a<1995 và b<1995
=>a=0;b=1995 hoặc a=1995 ;b=0
https://www.youtube.com/channel/UChl7sWYr-g8VLbItDuaWPnw
sub hộ mik