Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 124 = 5y
Ta thấy : 5y luôn lẻ (\(\forall\)y) => 2x + 124 cũng là số lẽ
Mà 124 là số chẵn => 2x là số lẽ => x = 0
Với x = 0 => 20 + 124 = 5y
=> 1 + 124 = 5y
=> 125 = 5y
=> 5y = 53
=> y = 3
Vậy x = 0; y = 3 thõa mãn
b) Ta có: 10x + 168 = y2
=> 10x = y2 - 168
+) Nếu y là số lẻ => y2 là số lẻ
=> y2 - 168 lẻ
=> 10x lẻ => x = 0
Với x = 0 => 100 + 168 = y2
=> 1 + 168 = y2 => 169 = y2
=> y2 = 132
=> \(\orbr{\begin{cases}y=13\\y=-13\end{cases}}\)
+) Nếu y chẵn => y2 chẵn
=> y2 - 168 chẵn
=> 10x chẵn
Do 10x \(⋮\) 10 => y2 - 168 \(⋮\)10
Mà y2 là số chính phương (ko có tận cùng là 8)
=> y2 - 168 ko \(⋮\) 10
=> pt vô nghiệm
Vậy x = 0 và y = 13 hoặc x - 0 và y = -13 thõa mãn
Xét đề bài là tìm x y là số tự nhiên
a) \(2^x+124=5^y\)
+) Với x=0
ta có:
\(2^0+124=5^y\)
\(5^y=125=5^3\)
y=3
+) Với x>0 => y>3
Ta có: \(2^x+124⋮2\)
và \(5^y\) không chia hết cho 2
=> phương trình vô nghiệm
Vậy x=0; y=3
b) \(10^x+168=y^2\)
+) Với x=0 thay vào ta có:
\(y^2=169=13^2\Rightarrow y=13\)
+) Với x>0 => y>13
\(10^x+168=y^2\)
Ta có VT chia 10 dư 8
VP là số chính phương chia 10 không thể dư 8 được
=> phương trình vô nghiệm
Vậy x=0 và y=13 thỏa mãn
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
a) Dễ thấy P = 102120 + 2120
= 102120 + 212.10
= 10(102119 + 212)
=> P \(⋮10\)
Lại có P = 102120 + 2120
= 10(102119 + 212)
= 10.(1000...00 + 212)
2119 số 0
= 10.1000...0212
2116 số 0
Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)
là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)
= 1 + 2 + 1 + 2 = 6 \(⋮3\)
=> S \(⋮3\Rightarrow P=10S⋮3\)
mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)
Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)
=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
(10n + 15) - (10n + 4) \(⋮d\)
<=> 11 \(⋮d\)
\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)
<=> d = 11
Vậy (a;b) = 11