Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b.
Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có
\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)
và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)
\(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)
\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)
\(=ab\)
Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)
\(b=15\) thì \(a=300\), thỏa mãn.
\(b=30\) thì \(a=150\), không thỏa.
\(b=45\) thì \(a=100\), không thỏa.
\(b=60\) thì \(a=75\), thỏa mãn.
Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\) là các cặp số a, b thỏa mãn yêu cầu bài toán.
Lời giải:
Vì $ƯCLN(a,b)=15$ nên đặt $a=15x, b=15y$ trong đó $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$BCNN(a,b)=15xy=300$
$\Rightarrow xy=300:15=20$
Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,20), (4,5), (5,4), (20,1)$
$\Rightarrow (a,b)=(15,300), (60,75), (75,60), (300,15)$
Theo bài ra ta có: a = 15.k; b = 15.d (k;d) = 1
⇒ a.b = 15.k.15.d ⇒a.b = 300.15
⇒ 15.k.15.d = 300.15 ⇒ k.d = 300.15:15:15 ⇒ k.d = 20
Mặt khác ta cũng có: 15.k + 15 = 15.d
15.(k + 1) = 15d
k + 1 = d ⇒ k = d - 1
Thay k = d - 1 vào k.d = 20 ta có: (d-1).d = 20 ⇒ (d-1).d = 4.5 ⇒ d = 5
k = 5 - 1 = 4
Vậy a = 15.4 = 60; b = 60 + 15 = 75
Kết luận vậy (a;b) =(60; 75)
a*b=5*300=1500
a=5k, b=5k1
5k*5k1=1500
hay25*k*k1=1500k*k1=60 rồi ddawtjj từng trường hợp
Vì \(BCNN\left(a,b\right)=300\) và \(ƯCLN\left(a,b\right)=15\)
\(\Leftrightarrow a.b=300.15=4500\)
Vì \(ƯCLN\left(a,b\right)=15\) nên \(a=15m\) và \(b=15n\) với \(ƯCLN=\left(m,n\right)=1\)
Vì \(a+15=b\Rightarrow15m+15=15n\Rightarrow15\left(m+1\right)=15n\)
\(\Leftrightarrow m+1=n\)
Mà \(a.b=4500\Rightarrow15m.15n=4500\Rightarrow15.15.m.n=4500\)
\(\Leftrightarrow m.n=20\)
\(\Leftrightarrow m=1\) và \(n=20\) hoặc \(m=4\) và \(n=5\)
Ta có :
a.b = 300. 15 = 4500 ( a ≥ b )
a = 15.m ; b = 15. n và UCLN(m,n) = 1 (m ≥ n)
Lại có :
a . b = 4500
15 .m . 15. n = 4500
225 . (m . n) = 4500
m.n = 20
Ta có bảng sau :
m | 5 | 20 Thử lại : a + 15 = b a + 15 = b
n | 4 | 1 60 + 15 = 75 ( chọn ) 15 + 15 = 300 ( loại )
a | 75 | 300 Vậy (a,b ) = ( 75 ; 60 )
b | 60 | 15