Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử A \(\le\)B
Đặt: A = 45 x A', B = 45. B' (A', B' \(\inℕ^∗\),\(ƯCLN\left(A',B'\right)=1\), A'\(\le\)B)
\(\Rightarrow\)45 x A' x 45 x B' = 24300
A' x B' = 24300 : 452 = 12
Ta có: 12 = 1 x 12 = 3 x 4
\(\Rightarrow\)Ta có các trường hợp:
- Nếu A' = 1, B' = 12 \(\Rightarrow\)A = 45; B = 360
- Nếu A' = 3, B' = 4 \(\Rightarrow\)A = 135, B = 180
Câu a) sai đề nên mình chỉ làm câu b) thôi nha:
b) a. b= 24300 và ƯCLN(a;b) = 45
Ta có: a > b
Ư CLN(a, b) = 45 và a.b = 24300
a = 45. m ; b = 45. n (m > n)
m, n là 2 số nguyên tố cùng nhau
45.m . 45.n = 24300
45. 45 . (m.n) = 24300
2025 . (m.n) = 24300
m.n = 24300 : 2025 = 12
Ta có bảng sau:
m | 12 | 4 | |
n | 1 | 3 | |
a | 540 | 180 | |
b | 45 | 135 |
a bắt buộc phải lớn hơn b bạn. Vì BCNN nhân với ƯCLN = a.b nên a = (a.b): b. Vậy nếu a < b thì ko phải là BCNN < ƯCLN rồi à? Đây chỉ là 1 cách hiểu đơn giản, cũng từ đây suy ra m > n.
Đặt : \(ƯCLN\left(a,b\right)=d\)
\(\Rightarrow a=d.m\)\(;\)\(b=d.n\)\(\left(m,n\in N;\left(a,b\right)=1;m>n\right)\)
\(\Rightarrow BCNN\left(a,b\right)=d.m.n\)
Ta có : \(\frac{ƯCLN\left(a,b\right)}{BCNN\left(a,b\right)}=\frac{1}{6}\)
\(\Rightarrow\frac{d}{d.m.n}=\frac{1}{6}\)
\(\Rightarrow m.n=6\)
\(\Rightarrow a-b=d\left(m-n\right)=5\)
Ta lại có : \(\left(m,n\right)=1\)\(;\)\(m.n=6\)\(;\)\(m>n\)
\(\Rightarrow\left(m,n\right)\in\left\{\left(6;1\right);\left(3;2\right)\right\}\)
Xét từng TH :
+) TH1 : \(m=6\)\(;\)\(n=1\)
\(\Rightarrow d\left(m-n\right)=5\)
\(\Rightarrow d\left(6-1\right)=5\)
\(\Rightarrow d.5=5\)
\(\Rightarrow d=1\)
\(\Rightarrow a=d.m=1.6=6\)
\(\Rightarrow b=d.n=1.1=1\)
+) TH2 : \(m=3\)\(;\)\(n=2\)
\(\Rightarrow d\left(m-n\right)=5\)
\(\Rightarrow d\left(3-2\right)=5\)
\(\Rightarrow d.1=5\)
\(\Rightarrow d=5\)
\(\Rightarrow a=d.m=5.3=15\)
\(\Rightarrow b=d.n=5.2=10\)
Vậy \(\left(a,b\right)\in\left\{\left(6;1\right);\left(15;10\right)\right\}\)
Cho mk hỏi
BCNN(a,b)=a.b=d.n.d.m
Thì sao có thể =d.n.m được
Chúc bn học tốt
Thanks bn nhiều
b) Ta có: ƯCLN(a,b) = 45
=> a = 45k; b = 45n
=> a.b = 45k.45n = 2025kn
=> kn = 24300 : 2025 = 12
Vậy k;n xảy ra hai trường hợp
TH1: k = 1; n = 12 (hoặc ngược lại)
TH2: k = 2; n = 6 (hoặc ngược lại)
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
BCNN(a,b)=360
<=> a=360/h
b=360/k
suy ra a.b=(360/h)(360/k)=4320
<=> 360*360/4320=h*k
<=>h*k=30
Vì a,b thuộc N nên h,k thuộc N
<=>h*k=1*30=2*15=3*10=5*6
do a<b nên h>k
do đó h,k thuộc tập hợp (30;1);(15;2);(10;3);(6;5)
Vậy a=360/30=12 ; b=360/1=360
a=360/15=24 ; b=360/1=180
a=360/10=36 ; b=360/3=120
a=360/6=60 ; b=360/5=72
Bài làm của bạn Alexandra Jade khá tốt, chỉ bổ sung thêm điều kiện là h và k phải là hai số nguyên tố cùng nhau (vì nếu có ước chung lớn hơn 1 thì BCNN(a,b) sẽ nhỏ hơn 360.
Thêm nữa là đề bài không yêu cầu a < b nên phải bổ sung thêm các trường hợp \(a\ge b\)