K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

Ta có: ED AB, AC AB => DE // AC (từ vuông góc đến song song), áp dụng định lý Talet, ta có: B D D A = B E E C  

⇔   x 2   +   6 x   –   27   =   0

Vậy x = 3

Đáp án: A

1 tháng 8 2021

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

1 tháng 8 2021

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

 

13 tháng 5 2016

Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1 
Với b = 1, a + b = a.b => a + 1 = a (vô lí) 
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk) 
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1

13 tháng 12 2023

a: Sửa đề: \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

Xét ΔAMN và ΔABC có

\(\widehat{AMN}=\widehat{ABC}\)(hai góc đồng vị, MN//BC)

\(\widehat{A}\) chung

Do đó: ΔAMN đồng dạng với ΔABC

=>\(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

b: \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)

=>\(\dfrac{MN}{8}=\dfrac{2}{5}\)

=>\(MN=2\cdot\dfrac{8}{5}=\dfrac{16}{5}\)

NV
9 tháng 7 2021

\(\left\{{}\begin{matrix}a^2+b^2=32\\a+b+2ab=40\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+2ab+a+b=72\\a+b+2ab=40\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2+\left(a+b\right)-72=0\\a+b+2ab=40\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=8\\a+b=-9\end{matrix}\right.\\a+b+2ab=40\end{matrix}\right.\)

TH1: \(a+b=8\Rightarrow ab=16\)

\(\Rightarrow a\left(8-a\right)=16\Leftrightarrow a^2-8a+16=0\)

\(\Leftrightarrow\left(a-4\right)^2=0\Rightarrow a=4\Rightarrow b=4\) 

TH2: \(a+b=-9\Rightarrow ab=\dfrac{49}{2}\)

\(\Rightarrow a\left(-9-a\right)=\dfrac{49}{2}\) \(\Leftrightarrow2a^2+18a+49=0\)

\(\Leftrightarrow2\left(a+\dfrac{9}{2}\right)^2+\dfrac{17}{2}=0\) (ko tồn tại a thỏa mãn)

Vậy \(\left\{{}\begin{matrix}a=4\\b=4\end{matrix}\right.\)

NV
9 tháng 7 2021

Cách 2:

Với mọi số thực a; b ta luôn có:

\(\left(a-4\right)^2+8\left(a-b\right)^2+\left(b-4\right)^2\ge0\)

\(\Leftrightarrow a^2-8a+16+8\left(a^2-2ab+b^2\right)+b^2-8a+16\ge0\)

\(\Leftrightarrow9\left(a^2+b^2\right)\ge8\left(a+b+2ab\right)-32\)

\(\Leftrightarrow9\left(a^2+b^2\right)\ge288\)

\(\Leftrightarrow a^2+b^2\ge32\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=4\)

17 tháng 12 2015

ta có: a+b=35 suy ra a=35-b

         a*b=300 suy ra a=300:b

35-b=300:b

suy ra b*(35-b)=300

   35b-b^2=300

suy ra 35b-b-300=0

-b^2+35b-300=0

-(b^2-35b+300)=0

-(b^2-2b17,5+17,5^2+300-17,5^2)=0

-(b-17,5)^2-6,25=0

6,25-(b-17,5)^2=0

2,5^2-(b-17,5)^2=0

(2,5-b+17,5)(2,5+b-17,5)=0

(20-b)(15-b)=0

20-b=0       b=20

hoặc 15-b=0          b=15

nếu b=20 thì a=15

nếu b=15 thì a=20

vậy a=15 ; b=20 hay ngược lại

 

17 tháng 12 2015

a = 20 ; b = 15

a = 15 ; b = 20