K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

ab . aba = abab

<=>  ab . aba = ab . 101

=>  aba  = 101

=>    a = 1

      b = 0

hok tốt .

17 tháng 7 2018

ab . aba = abab

< = > ab . aba = ab . 101

= > aba = 101

= > a = 1

      b = 0

16 tháng 10 2017

\(101.11=1111\)

\(10.101=1010\)

16 tháng 10 2017

EM HỌC LỚP 5 MÀ CŨNG LÀM ĐƯỢC SAO ANH(CHỊ)KO LÀM ĐƯỢC

AAAA:AA=101

101 LÀ ABA SUY RA AA=11 EM KO BIẾT GIẢI THÍCH ĐÂU Ạ

12 tháng 7 2016

Ta có :

ab x aba = abab

ab x aba = ab x100 + ab

ab x aba = ab x 101

=> aba = 101

=> a = 1, b = 0

Ủng hộ nhé! Blog.Uhm.vN

12 tháng 7 2016

Ta có :

ab x aba = abab

ab x aba = ab x100 + ab

ab x aba = ab x 101

=> aba = 101

=> a = 1, b = 0

28 tháng 7 2016

ab aba = abab

aba = ab x 101 : ab

aba = 101

=> \(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

28 tháng 7 2016

ab x aba = abab

=>ab x aba = ab x 101

=>aba=101

=>a=1 và b=0

Vậy...

12 tháng 8 2017

\(ab.aba=abab\Leftrightarrow ababa=abab\Leftrightarrow ababa-abab=0\)

\(\Leftrightarrow abab\left(a-1\right)=0\Leftrightarrow\left\{{}\begin{matrix}abab=0\\a-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\bb=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)

vậy \(a=1;b=0\)

12 tháng 8 2017

\(ab.aba=abab\Rightarrow ababa=abab\Rightarrow ababa-abab=0\)

\(\Rightarrow abab\left(a-1\right)=0\Rightarrow\left\{{}\begin{matrix}abab=0\\a-1=0\end{matrix}\right.\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)

Vậy \(a=1;b=0\)

28 tháng 8 2016

a = 1 , b = 0

Cách giải như sau :

ab x aba = abab

ab x aba = ab x 100 + ab

ab x aba = ab x ( 100 + 1 )

ab x aba = ab x 101

=> aba = 101

Vậy a = 1 , b = 0

28 tháng 8 2016

Ta có :

ab x aba = abab

ab x aba = ab x 100 + ab

ab x aba = ab x ( 100 + 1 )

ab x aba = ab x 101

=> aba = 101

=> a = 1 ; b = 0

10 tháng 8 2017

\(\overline{abc}\cdot126=15\overline{abc}\\ 126\cdot\overline{abc}=15000+\overline{abc}\\ =125\cdot\overline{abc}=15000\\ \overline{abc}=120\)

Vậy ...

b,

\(\overline{ab}\cdot\overline{aba}=\overline{abab}\\ \overline{aba}=\overline{abab}:\overline{ab}\\ \overline{aba}=101\)

Vậy ...