Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi M a ; b là điểm biểu diễn số phức z = a + b i . Đặt I = 1 ; 1 , A 7 ; 9 và B 0 ; 8
Ta xét bài toán: Tìm điểm M thuộc đường tròn C có tâm I, bán kính R = 5 sao cho biểu thức P = M A + 2 M B đạt giá trị nhỏ nhất.
Trước tiên, ta tìm điểm K x ; y sao cho M A = 2 M K ∀ M ∈ C .
Ta có
M A = 2 M K ⇔ M A 2 = 4 M K 2 ⇔ M I → + I A → 2 = 4 M I → + I K → 2
⇔ M I 2 + I A 2 + 2 M I → . I A → = 4 M I 2 + I K 2 + 2 M I → . I K →
⇔ 2 M I → I A → − 4 I K → = 3 R 2 + 4 I K 2 − I A 2 *
(*) luôn đúng ∀ M ∈ C ⇔ I A → − 4 I K → = 0 → 3 R 2 + 4 I K 2 − I A 2 = 0 .
I A → − 4 I K → = 0 → ⇔ 4 x − 1 = 6 4 y − 1 = 8 ⇔ x = 5 2 y = 3
Thử trực tiếp ta thấy K 5 2 ; 3 thỏa mãn 3 R 2 + 4 I K 2 − I A 2 = 0 .
Ta cos M A + 2 M B = 2 M K + 2 M B = 2 M K + M B ≥ 2 K B .
Vì B I 2 = 1 2 + 7 2 = 50 > R 2 = 25 nên B nằm ngoài (C).
Vì K I 2 = 3 2 2 + 2 2 < R 2 = 25 nên K nằm trong (C) .
Dấu bằng trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK . Do đó M A + 2 M B nhỏ nhất khi và chỉ khi M là giao điểm của (C) và đường thẳng BK.
Phương trình đường thẳng B K : 2 x + y − 8 = 0 .
Phương trình đường tròn C : x − 1 2 + y − 1 2 = 25 .
Tọa độ điểm M là nghiệm của hệ
2 x + y = 8 x − 1 2 + y − 1 2 = 25 ⇔ x = 1 y = 6
hoặc x = 5 y = − 2 .
Thử lại thấy M 1 ; 6 thuộc đoạn BK.
Vậy a = 1, b = 6 ⇒ a + b = 7 .
Ta có: \(72=2^3.3^2\)
\(\Rightarrow\) Trong 2 số a, b có một số chia hết cho 2
Giả sử a chia hết cho 2
\(b=\left(42-a\right)\) ⋮ \(2\)
\(\Rightarrow\) a và b ⋮ 2
Tương tự ta cũng có a và b ⋮ 3
\(\Rightarrow\) a và b ⋮ 6
Dễ thấy \(42=36+6=30+12=18+24\) (VÌ tổng 2 số ⋮ 6)
Mà trong ba tổng trên chỉ có \(18+24\) thỏa mãn
\(\Rightarrow a=18;b=24\)
cho a và b là 2 số nguyên dương ko chia hết cho nhau. Biết BCNN(a,b)=630 và UCLN(a,b)=18. Tìm a và b
Theo đề bài ta có : UCLN(a,b)=18
=> a= 18m ; b = 18 n UCLN (m,n) = 1
ta có : a.b= BCNN(a,b).UCLN(a,b)=630.18=5670
=18m.18n=324.m.n=11340
=>m.n=11340:324=35
=>m,n thuộc U(35)={1,5,7,3}lập bảng
m | n | a | b |
1 | 35 | 18 | 630 |
5 | 7 | 90 | 126 |
7 | 5 | 126 | 90 |
35 | 1 | 630 | 18 |
vậy các cặp a,b thỏa mãn là (18,630);(90;126);(126;90);(630;18)
like mình nha
Đúng bạn ạ! nhưng bạn quên mất trường hợp là a và b là 2 số nguyên dương ko chua hết cho nhau
a) Số nghịch đảo của \(\frac{a}{b}\) là \(\frac{b}{a}\)
b) \(-\frac{17}{7}.x=\frac{7}{-17}\Leftrightarrow x=\frac{7}{-17}:-\frac{17}{7}=\frac{49}{289}\)
Đáp án B
Cách 1:
Đặt A B → = a → ; A C → = b → ⇒ A B → , A C → = B A C ^ = 120 0
Ta có A B → − A C → = B C → = a → − b →
Áp dụng định lý hàm cosin cho tam giác ABC ta có
B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^ = 49 ⇒ B C = 7
Ta chọn B
Cách 2:
a → − b → 2 = a → 2 + b → 2 − 2 a → b → = a → 2 + b → 2 − 2 a → b → cos a → , b → = 3 2 + 5 2 − 2.3.5. − 1 2 = 49
⇒ a → − b → 2 = 49 ⇒ a → − b → = 7
Ta chọn B
ƯCLN(a,b)=32. Đặt a= 6x ; b= 6y
với ƯCLN(x,y)=1 và x,y ∈ N
ta có : a.b=216
6x.6y=216
x.y=216:(6.6)
x.y= 6
từ trên ta có bảng:
x | 1 | 2 | 3 | 6 |
y | 6 | 3 | 2 | 1 |
do đó, ta có:
a=6.1=6;b=6.6=36
a=6.2=12;b=6.3=18
a=6.3=18;b=6.2=12
a=6.6=36;b=6.1=6
CHÚC BẠN LÀM TỐT NHÉ!
Từ a - b = 7 hay a = b+7 do đó nếu a chia hết cho 7 thì b cũng chia hết cho 7 và ngược lại. (*)
Lại có BCNN(a,b) = 140 suy ra: a hoặc b chia hết cho 7 (vì 7 là ước của 140). (**)
Từ (*)(**) suy ra a và b đều chia hết cho 7.
Đặt b=7k (k nguyên dương) suy ra a = 7(k+1)
khi đó BCNN(a;b) = BCNN(7(k+1),7k) = 140
hay BCNN(k+1;k) = 20 (chia 2 vế cho 7)
tương đương k(k+1) = 20 (vì UCLN(k+1;k) = 1)
Giải ra k = 4, suy ra b = 28; a = 35
Vậy 2 số phải tìm là: a = 35 và b = 28