K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Ngu người 

24 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

8 tháng 7 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab=2.1=2.\)(theo giả thiết ab=1)\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge\left(a+b+1\right).2+\frac{4}{a+b}=\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)(1)

Áp dụng bất đẳng thức AM-GM (Cauchy) cho hai số không âm ta được:

\(a+b\ge2\sqrt{ab}=2\sqrt{1}=2\)

\(\left(a+b\right)+\frac{4}{a+b}\ge2\sqrt{\left(a+b\right).\frac{4}{a+b}}=2.\sqrt{4}=4\)

Suy ra \(\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\ge2+4+2=8\)(2)

Từ (1) và (2) suy ra:\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)

Vậy Min của biểu thức đã cho là 8, Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b\\ab=1\\a+b=\frac{4}{a+b}\end{cases}\Leftrightarrow a=b=1}\)

25 tháng 8 2019

QUÊN TOÁN 8

25 tháng 8 2019

1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố

TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)

=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)

31 tháng 3 2017

lên google dịch gõ lõm sẽ thấy điều bất ngờ xảy ra

31 tháng 3 2017

giải dùm đi pham thanh binh

14 tháng 12 2017

1) 

A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b  + c ) 

số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37

Vậy A không là số chính phương

14 tháng 12 2017

2 bài tách riêng nha

1.CMR...

2. tìm số .....