Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
gọi thương của phép chia là f(x)
ta có
x^3+ax^2-4=xf(x).(x^2+4x+4)
=>x^3+ax^2-4=f(x).(x+2)^2
Với x=-2thì
-2^3+a.-2^2-4=f(x).0
=>x=3
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
Gọi thương của phép chia F(x) cho Q(x) là A(x)
Theo bài ra ta có: \(F\left(x\right)=x^4+ax^3+b=\left(x^2-1\right).A\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right).A\left(x\right)\)
Do giá trị của biếu thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=-1\)ta được:
\(\hept{\begin{cases}a+b+1=0\\-a+b+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy....
Gọi thương của 2 đa thức trên là : R(x)
\(\Rightarrow x^4+ax^3+b=\left(x^2-1\right)R\left(x\right)\)
\(\Rightarrow x^4+ax^3+b=\left(x-1\right)\left(x+1\right)R\left(x\right)\)
Vì đẳng thức trên đúng với mọi x nên cho x = 1 và x = -1 ta có :
\(\hept{\begin{cases}x=1\Rightarrow1+a+b=0\Rightarrow a+b=-1\\x=-1\Rightarrow1-a+b=0\Rightarrow a-b=1\end{cases}}\)
\(\Rightarrow a=\left(1+-1\right):2=0\)
\(b=0-1=-1\)
\(\Leftrightarrow x^3-ax^2-4=\left(x^2+4x+4\right)\cdot a\left(x\right)=\left(x+2\right)^2\cdot a\left(x\right)\)
Thay \(x=-2\Leftrightarrow-8-4a-4=0\Leftrightarrow a=-3\)
\(\Leftrightarrow x^3+4x^2+4x+\left(-4-a\right)x^2-4⋮x^2+4x+4\)
\(\Leftrightarrow-4-a=4+x^2\)
\(\Leftrightarrow a=-4-4-x^2=-x^2-8\)