Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2 + ax + 9
= \(x^2+2.\frac{a}{2}.x+3^2\)
=\(\left(x+3\right)^2\)
Để xuất hiện hàng đẳng thức trên thì \(\frac{a}{2}=3\Rightarrow a=6\)
\(a,\)
với \(a=100\)
\(=>9x^2+30x+25=\left(3x\right)^2+2.3.5x+5^2=\left(3x_{ }+5\right)^2\)
\(b,\)
với \(a=\dfrac{1}{25}\)
\(25x^2-2x+\dfrac{1}{25}=\left(5x\right)^2-2.5.x.\dfrac{1}{5}+\left(\dfrac{1}{5}\right)^2=\left(5x-\dfrac{1}{5}\right)^2\)
\(c,\)
với \(a=6\)
\(=>x^2+2.3.x+3^2=\left(x+3\right)^2\)
\(d.\)
với \(a=\dfrac{4}{3}\)
\(=>\left(2x\right)^2-2.2.\dfrac{1}{3}x+\left(\dfrac{1}{3}\right)^2=\left(2x-\dfrac{1}{3}\right)^2\)
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
a. $x^2+4x+4$
$=x^2+2\cdot x\cdot2+2^2$
$=(x+2)^2$
b. $x^2-6xy+9y^2$
$=x^2-2\cdot x\cdot3y+(3y)^2$
$=(x-3y)^2$
c. $4x^2+12x+9$
$=(2x)^2+2\cdot2x\cdot3+3^2$
$=(2x+3)^2$
d. $x^2-x+\dfrac14$
$=x^2-2\cdot x\cdot \dfrac12+\Bigg(\dfrac12\Bigg)^2$
$=\Bigg(x-\dfrac12\Bigg)^2$
có x2 + ax +9 = x2 + 2.\(\frac{a}{2}.x\)+ 32 = (x + 3 )2
để xuất hiện hằng đẳng thức trên thì \(\frac{a}{2}\) = 3 => a = 6