Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - y2 - z2 - 2yz
=x2 - (y2 + 2yz + z2)
=x2 - (y + z)2
=(x - y - z)(x + y + z)
b)4x2(x - 6) + 9y2(6 - x)
=4x2(x - 6) - 9y2(x - 6)
=(x - 6)(4x2 - 9y2)
=(x - 6)(2x - 3y)(2x + 3y)
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Vì \(f\left(x\right)⋮\left(x+3\right)\)
Áp dụng định lý Bơ-du ta có:
\(f\left(-3\right)=0\)\(\Rightarrow2.\left(-3\right)^3-3.\left(-3\right)^2+\left(-3\right)+a=0\)
\(\Leftrightarrow-54-27-3+a=0\)
\(\Leftrightarrow-84+a=0\)\(\Leftrightarrow a=84\)
Vậy \(a=84\)
Ta có đa thức bị chia bậc 3
Đa thức chia bậc 1
=> Đa thức thương bậc 2
Lại có hệ số cao nhất của đa thức bị chia là 2
nên đặt đa thức thương là 2x2 + cx + d
Khi đó : 2x3 - 3x2 + x + a chia hết cho x + 3
⇔ 2x3 - 3x2 + x + a = ( x + 3 )( 2x2 + cx + d )
⇔ 2x3 - 3x2 + x + a = 2x3 + cx2 + dx + 6x2 + 3cx + 3d
⇔ 2x3 - 3x2 + x + a = 2x3 + ( c + 6 )x2 + ( d + 3c )x + 3d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c+6=-3\\d+3c=1\\3d=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-9\\d=28\\a=84\end{cases}}\)
Vậy a = 84
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Câu 1:
\(2x^3-3x^2+x+a\)
\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)
\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :
\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).
Câu 2:
\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)
\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)
\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)
\(\Leftrightarrow2x^2-10x-11=0\)
\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)