Tìm a để các bất phương trình sau là bất phương trình bậc nhất ẩn x:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

C nhé

Vì;Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.

 NHỚ K NHA

24 tháng 4 2017

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.

chọn C

17 tháng 3 2021

1. Trong các phương trình sau, phương trình bậc nhất 1 ẩn là

A. 2/x - 7=0; B. |7x+5)-1=0; C. 8x-9=0

2. điều kiện xác định của phương trình

\(\frac{4}{2x-3}=\frac{7}{3x-5}\)

A. x khác 3/2. B. x khác5/3; C. x khác 3/2 hoặc 5/3; D. x khác 3/2 và 5/3

17 tháng 3 2021

1.Pt bậc nhất 1 ẩn:\(8x-9=0\)

2.ĐKXĐ:\(x\ne\frac{3}{2};x\ne\frac{5}{3}\)

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

21 tháng 4 2017

bất phương trình bậc nhất 1 ẩn là a, b, d

a) -1/2x+5>_0

<=> 2x+5>_0

<=> 2x>_-5

<=> 2x.1/2>_-5.1/2

<=>x>_-5/2

Vậy tập nghiệm của bpt S={x/x>_-5/2}

b) 2x+3/4<0

<=> 2x+3<0

<=> 2x<-3

<=> 2x.1/2<-3.1/2

<=> x<-3/2

Vậy tập nghiệm của bpt S={x/x<-3/2}

d)5-2x<0

<=> -2x<-5

<=>-2x.-1/2>-5.-1/2

<=> x>5/2

Vậy tập nghiệm của bpt S={x/x>5/2}

24 tháng 4 2019

a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)

TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )

TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )

Vậy....

24 tháng 4 2019

b) \(x^2-6x+9< 0\)

\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )

Vậy bpt vô nghiệm