Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Biểu thức viết không được rõ ràng lắm. Bạn viết lại để mọi người hiểu đề và hỗ trợ tốt hơn nhé.
Do \(a;b;c\in Z^+\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)
\(\Rightarrow5^b>5^c\Rightarrow b>c\)
\(a^3+3a^2+5=5^b\)
\(\Rightarrow a^2\left(a+3\right)+5=5^b\)
\(\Rightarrow a^2\cdot5^c+5=5^b\)
\(\Rightarrow5^b⋮5^c\)
\(\Rightarrow a^2\left(a+3\right)+5⋮a+3\)
\(\Rightarrow5⋮a+3\)
\(\Rightarrow a+3\in\left\{5,1,-1,-5\right\}\)
Mà \(a+b>3\Rightarrow a+3=5\)
\(\Rightarrow a=2\)
\(\Rightarrow b=2;c=1\)
5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).