K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(\text{Theo tính chất của dãy tỉ số bằng nhau, ta có :}\)

\(\frac{x}{15}=\frac{y}{15}=\frac{z}{7}=\frac{x-y+z}{15-15+7}=\frac{30}{7}\)

 \(\Rightarrow\frac{x}{15}=\frac{y}{15}=\frac{30}{7}\Leftrightarrow x=y=\frac{450}{7}\)

\(\Rightarrow\frac{z}{7}=\frac{30}{7}\Leftrightarrow z=30\)

Vậy : \(x=y=\frac{450}{7};z=30\)

15 tháng 8 2018

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ :

x/15=y/15=z/7 = x/15=z/7+y/15=x+z-y/15+7-15=x-y+z/15-15+7=30/7 ( 1)

từ (1) ta suy ra : x/15=30/7 và y/15=30/7 và z/7=30/7

vậy x=450/7 , y=450/7 và z=30

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

16 tháng 1 2019

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) nha bạn!

ko hỉu thì ib

16 tháng 1 2019

\(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\ge9\) với x,y,z dương hay jj đó chứ? (cái này t k bt -.-) VD: x=2, y=-2,z=4

=> \(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)=\left(2-2+4\right).\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{4}\right)=1\)

-----------------------------------------------------------------------------------------

\(\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{x+y+z}{x+y+z}=0\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

vì x+y+z khác 0 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{xy+yz+xz}{xyz}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{\left(xy+yz+xz\right).\left(x+y+z\right)-xyz}{xzy.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{x^2y+xy^2+xyz+zyx+y^2z+yz^2+x^2z+xyz+xz^2-xzy}{xyz.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\left(yz^2+xzy\right)+\left(x^2z+xz^2\right)=0\)

\(\Leftrightarrow xy.\left(x+z\right)+y^2.\left(x+z\right)+yz.\left(z+x\right)+xz.\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left[x.\left(y+z\right)+y.\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x+y\right).\left(y+z\right).\left(x+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=-z\end{cases}\text{hoặc }x=-z}\)

\(\Rightarrow P=\left(\frac{1}{x}-\frac{1}{y}\right).\left(\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

ps: bài này t làm cách l8, ai có cách ez hơn giải vs ak :')  morongtammat

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)

Vậy  \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} =  - 4\)

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

20 tháng 6 2016

v~ tuần này ko giải nữa

20 tháng 6 2016

biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau

5 tháng 11 2017

Tớ chỉ làm câu b thôi nhé

Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần

92:(15+10+21)=2

x=2.10=20

y=2.15=30

z=2.21=42

11 tháng 7 2016

Vì \(\frac{x}{y}=\frac{7}{9}\)\(\Rightarrow\frac{x}{7}=\frac{y}{9}\)(1)

     \(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)

             Từ (1) và (2) suy ra \(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}\)

       Áp dụng tính chất dãy tỉ số bằng nhau ta có:

                \(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}=\frac{x-y+z}{7-9+3}=-\frac{15}{1}=-15\)

\(\begin{cases}\frac{x}{7}=-15\\\frac{y}{9}=-15\\\frac{z}{3}=-15\end{cases}\Rightarrow\begin{cases}x=-105\\y=-135\\z=-45\end{cases}\)

Vậy x=-105

       y=-135

       z=-45

 

11 tháng 7 2016

Ta có:\(\frac{x}{y}=\frac{7}{9};\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{9};\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x}{49}=\frac{y}{63};\frac{y}{63}=\frac{z}{27}\)

\(\Rightarrow\frac{x}{49}=\frac{y}{63}=\frac{z}{27}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{49}=\frac{y}{63}=\frac{z}{27}=\frac{x-y+z}{49-63+27}=\frac{-15}{13}\)

Suy ra: \(\frac{x}{49}=\frac{-15}{13}\Rightarrow x=-\frac{735}{13};\frac{y}{63}=\frac{-15}{13}\Rightarrow y=-\frac{945}{13};\frac{z}{27}=\frac{-15}{13}\Rightarrow z=-\frac{405}{13}\)

9 tháng 10 2016

Ta có:

\(\begin{cases}\frac{x}{5}=\frac{y}{-7}\\\frac{y}{4}=\frac{z}{15}\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{-20}=\frac{y}{28}\\\frac{y}{28}=\frac{z}{105}\end{cases}\)\(\Rightarrow\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}=\frac{x+3y-4z}{-20+84-420}=\frac{18}{-356}=\frac{-9}{178}\)

\(\Rightarrow\begin{cases}x=\frac{-9}{178}.\left(-20\right)=\frac{90}{89}\\y=\frac{-9}{178}.28=\frac{-126}{89}\\z=\frac{-9}{178}.105=\frac{-945}{178}\end{cases}\)

Vậy \(x=\frac{90}{89};y=\frac{-126}{89};z=\frac{-945}{178}\)