K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2024

Lời giải:
Nếu $p,q,r$ đều không chia hết cho 3. Ta biết rằng 1 scp khi chia 3 chỉ có dư $0$ hoặc $1$.

$\Rightarrow p^2,q^2,r^2$ chia $3$ dư $1$

$\Rightarrow p^2+q^2+r^2$ chia $3$ dư $3$ (hay chia 3 dư 0)

$\Rightarrow p^2+q^2+r^2\vdots 3$

Mà $p^2+q^2+r^2>3$ nên không thể là số nguyên tố (trái với yêu cầu đề bài)

Do vậy tồn tại ít nhất 1 số chia hết cho 3 trong 3 số $p,q,r$. Không mất tính tổng quát, giả sử $p\vdots 3\Rightarrow p=3$.

Vì $p,q,r$ là số nguyên tố liên tiếp nên có thể xảy ra các TH: $(q,r)=(2,5)$ hoặc $(q,r)=(5,7)$

Thử thì thấy $(q,r)=(5,7)$

Vậy $(p,q,r)=(3,5,7)$ và hoán vị.

24 tháng 10 2024

scp là gì

 

22 tháng 3 2017

 Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại

vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7

Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿

Vậy 3 số nguyên tố cần tìm là 3 5 7 

10 tháng 2 2021

Ta có : p<q<r

- Xét p = 2, tìm được 3 số : 2 ; 3 ; 5 (ktm)

- Xét p = 3, tìm được 3 số : 3 ; 5 ; 7 (tm)

- Xét p > 3 :

Vì mõi số nguyên tố >3 có bình phương luôn có dạng : 3k + 1 ; 3k + 2

+) Nếu có dạng 3k+1,ta có: (3k + 1)2 = 9k2 + 6k + 1\(\equiv\)1(mod3)

+) Nếu có dạng 3k+2 ,ta có: (3k + 2)= 9k2 + 12k + 4\(\equiv\)1 (mod3)

Nếu p > 3 thì p,q,r > 3 nên bình phương của chúng đều dư 1

\(\Rightarrow\)p2 + q2 + r2 \(\equiv\)0 (mod 3)  

\(\Rightarrow\)p2 + q2 + r2 (p,q,r > 3) \(⋮\)3 (loại)

Vậy 3 số nguyên tố liên tiếp đó là : 3 ; 5 ; 7

10 tháng 2 2021

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

11 tháng 3 2016

p=3

q=5

r=7

27 tháng 12 2015

p=3

q=5

r=7