Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x;y;z lần lượt là các góc của tam giác ABC:
X/3=Y/4=Z/5 và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
X/3=Y/4=Z/5=X+Y+Z/3+4+5=180/12=15
*X/3=15 SUY RA X=3 X 15 = 45
*Y/4=15 SUY RA Y= 4 X 15=60
*Z/5 =15 SUY RA Z=5 X 15 =75
Vây x=45
y=60
z=75
Gọi số đo các góc lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5};a+b+c=180\)( Định lý tổng 3 góc của tam giác bạn nhé )
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\)\(a=15.3=45\)
\(b=15.4=60\)
\(c=15.5=75\)
Vậy số đo các góc của tam giác lần lượt là 45 độ ; 60 độ ; 75 độ
Nếu bạn không tin thì có thể lấy ba số : 45 + 60 + 75 = 180 độ ( đúng bạn nhé )
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
Ta có:
\(a:b:c:d=2:3:4:5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\Leftrightarrow\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\)
Vì \(3a+b+4d=105+2c\Leftrightarrow3a+b-2c+4d=105\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)
Khi đó: \(\frac{3a}{6}=5\Rightarrow a=10\)
\(\frac{b}{3}=5\Rightarrow b=15\)
\(\frac{2c}{8}=5\Rightarrow c=20\)
\(\frac{4d}{20}=5\Rightarrow d=25\)
Vậy _______________________________