K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Gọi x;y;z lần lượt là các góc của tam giác ABC:

X/3=Y/4=Z/5 và x+y+z=180

Áp dụng tính chất của dãy tỉ số bằng nhau:

X/3=Y/4=Z/5=X+Y+Z/3+4+5=180/12=15

*X/3=15 SUY RA  X=3 X 15 = 45

*Y/4=15 SUY RA Y= 4 X 15=60

*Z/5 =15 SUY RA Z=5 X 15 =75

Vây x=45

y=60

z=75

19 tháng 10 2017

Gọi số đo các góc lần lượt là a , b , c 

Theo đề bài ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5};a+b+c=180\)( Định lý tổng 3 góc của tam giác bạn nhé )

Áp dụng tính chất dãy tỉ số bằng nhau ta có ;

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)

\(\Rightarrow\)\(a=15.3=45\)

\(b=15.4=60\)

\(c=15.5=75\)

Vậy số đo các góc của tam giác lần lượt là 45 độ ; 60 độ ; 75 độ

Nếu bạn không tin thì có thể lấy ba số : 45 + 60 + 75 = 180 độ ( đúng bạn nhé )

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

22 tháng 8 2015

Ta có:

\(a:b:c:d=2:3:4:5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\Leftrightarrow\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\)

Vì \(3a+b+4d=105+2c\Leftrightarrow3a+b-2c+4d=105\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)

Khi đó: \(\frac{3a}{6}=5\Rightarrow a=10\)

             \(\frac{b}{3}=5\Rightarrow b=15\)

            \(\frac{2c}{8}=5\Rightarrow c=20\)

           \(\frac{4d}{20}=5\Rightarrow d=25\)

Vậy _______________________________

22 tháng 8 2015

a = 10 

b = 15 

c = 20 

d = 25