K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2023

Để tìm 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số), chúng ta có thể tính từng số hạng trong dãy và cộng chúng lại.

Đầu tiên, chúng ta nhận thấy rằng dãy này có một quy luật. Mỗi số hạng trong dãy có số chữ số tăng dần từ 1 đến 2013, và mỗi số hạng sau đều là số hạng trước đó nhân -1.

Với quy luật này, chúng ta có thể tính từng số hạng và cộng chúng lại:

1 - 11 + 111 - 1111 + ... + 11..11

Để tính số hạng thứ i, chúng ta nhân số 1 với 10^(i-1), sau đó nhân kết quả với -1^(i+1). 

Ví dụ:
- Số hạng thứ 1: 1 * 10^(1-1) * (-1^(1+1)) = 1 * 1 * 1 = 1
- Số hạng thứ 2: 1 * 10^(2-1) * (-1^(2+1)) = 1 * 10 * -1 = -10
- Số hạng thứ 3: 1 * 10^(3-1) * (-1^(3+1)) = 1 * 100 * 1 = 100
- ...

Tiếp tục như vậy cho đến số hạng thứ 2013. Sau đó, chúng ta cộng tất cả các số hạng lại với nhau:

1 - 10 + 100 - 1000 + ... + (2013 số 1)

Chúng ta chỉ quan tâm đến 3 chữ số tận cùng, nên chúng ta chỉ cần tính tổng các số hạng có 3 chữ số tận cùng.

Để tính tổng các số hạng có 3 chữ số tận cùng, chúng ta thấy rằng các số hạng có chữ số tận cùng khác nhau sẽ có tổng bằng 0. Vì vậy, chúng ta chỉ cần tính tổng các số hạng có chữ số tận cùng là 1.

Có 2013 số hạng trong dãy, và chúng ta cần tính tổng các số hạng có chữ số tận cùng là 1. Vậy tổng này sẽ là 2013.

Vậy, 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số) là 2013.

24 tháng 9 2020

Hai số này quy luật đều giống nhau.

Vì số đầu tiên sau khi nhân hàng đầu của thừa số thứ 2 xong bao giờ cũng là số tận cùng,nên ta có quy luật 2 ; 4 ; 8 ; 6 ; ...

Rồi phần mũ cứ được số là giảm,cứ thế đến hết là được.

8 tháng 7 2017

Vì a=11111.....1111 có 31 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3.

\(\Rightarrow\)11111...1111 chia 3 dư 1

Vì b=111....111 có 38 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3

\(\Rightarrow\)b chia 3 dư 2

\(\Rightarrow\)a.b chia 3 dư 2

\(\Rightarrow\)a.b - 2 \(⋮3\)

8 tháng 7 2017

Ta có: a= 1111111..11111 (31 chữ số 1)

          a= (1 + 1 + 1 +...+ 1 + 1) ( 31 chữ số 1)

          a=31

          b= 1 + 1 + 1 +...+ 1 + 1(38 chữ số 1)

          b= 38

=> a.b - 2 = 31 . 38 - 2 = 1176

Mà 1176 chia hết cho 3

=> a.b - 2 chia hết cho 3 (đpcm)

23 tháng 2 2016

ta có: A=11..1  +    44..4+1

              2n c/s 1    n c/s 4

biến đổi \(A=111..1+4.11...1+1\)

\(A=\frac{10^{2n}-1}{9}+4.\frac{10^n-1}{9}+1=\frac{10^{2n}+4.10^n+4}{9}\)

\(A=\frac{\left(10^n+2\right)^2}{9}=\frac{\left(10..02\right)^2}{9}=\left(3...34\right)^2\)  luôn là 1 số chính phương(đpcm)

bn tự bổ sung thêm những chỗ mk viết thiếu'... chữ số' nhé

                                                         n-1 c/s 3

25 tháng 9 2015

a) Ta có: A chia hếtcho 3( do tổng các chữ số của A chia hết cho 3) 

Mặt khác:A >3. Vậy A là hợp số.

b) Ta có: B chia hết cho 11

Mặt khác:B >11. Vậy B là hợp số.  

c) Ta có:C chia hết cho 101

Mặt khác >101. Vậy C là hợp số.

d) ta có: D chia hết cho 1111

Mặt khác: D >1111. Vậy D là hợp số.