Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Gọi hai số tự nhiên đã cho là a và b ( a và b là các số tự nhiên khác 0 ; a < b )
Ưóc chung lớn nhất của hai số là 12 nên ta đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\)
Suy ra : m và n là số nguyên tố cùng nhau
BCNN của hai số bằng 72 nên ta có :
\(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\Rightarrow BCNN\left(a,b\right)=12mn\)
\(\Rightarrow12mn=72\Leftrightarrow mn=6\Leftrightarrow\orbr{\hept{\begin{cases}m=1\\n=6\end{cases}}}\)
\(\orbr{\hept{\begin{cases}m=2\\n=3\end{cases}}}\)
\(\Leftrightarrow\orbr{\hept{\begin{cases}a=12\\b=72\end{cases}}}\)
\(\orbr{\hept{\begin{cases}a=24\\b=36\end{cases}}}\)
Do hai số có hàng đơn vị khác nhau nên hai số đó là 24 và 36
Gọi 2 số cần tìm là a và b ( a , b \(\inℕ^∗\); 70 > a , b )
Vì giá trị của a và b là bình đăng nên giả sử a > b
=> a - b = 48 ( vì hiệu của 2 số cần tìm là 48 )
vì ƯCLN(a;b)= { 1 ; 12 ; 24 ; 36 ; 48 ; 60 ; 72 ; ... } (1)
Mà 70 > a > b
thử với các giá trị từ 1 ta thấy :
(a;b) = { ( 68 ; 12 ); ( 12 ; 68 ) }
Vậy .....
Học tốt
#Gấu
Gọi 2 số cần tìm là a và b ta có:
UCLN(a,b) = 20
< = > a chia hết cho 20 ; b chia hết cho 20
< = > a + b chia hết cho 20
Mà 192 không chia hết cho 20
Nên không tồn tại 2 số cần tìm