Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
ta có \(6^{195}\left(=\right)6^{4k+3}\left(=\right)6^{4k}+6^3\)(=) .......6+216=.....2
vậy \(6^{195}\)có tận cùng là 2
\(2^{1000}=2^{4k}\)(=) .......6
vậy \(2^{1000}\)có tận cùng là 6
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
Ta có:
\(99^{99}=99^{98}.99=\left(99^2\right)^{49}.99=\left(...01\right)^{49}.99=\left(...01\right).99=\left(...99\right)\)
\(99^{99^{99}}=99^{\left(...99\right)}=99^{2.k+1}=99^{2.k}.99=\left(99^2\right)^k.99=\left(...01\right)^k.99=\left(...01\right).99=\left(..99\right)\)