Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(a=\sqrt[7]{\dfrac{3}{5}};b=\sqrt[7]{\dfrac{5}{3}}\Rightarrow\left\{{}\begin{matrix}a+b=x\\ab=1\end{matrix}\right.\)
Ta có \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(\Rightarrow a^3+b^3=x\left(x^2-3\right)=x^3-3x\)
Ta có \(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)
\(\Rightarrow a^4+b^4=\left(x^2-2\right)^2-2=x^4-4x^2+2\)
\(\Rightarrow\left(a^3+b^3\right)\left(a^4+b^4\right)=\left(x^3-3x\right)\left(x^4-4x^2+2\right)\\ =x^7-3x^5-4x^5+12x^3+2x^3-6x\\ =x^7-7x^5+14x^3-6x\)
Lại có \(\left(a^4+b^4\right)\left(a^3+b^3\right)=a^7+b^7+\left(ab\right)^3\left(a+b\right)=\dfrac{3}{5}+\dfrac{5}{3}+x=\dfrac{34}{15}+x\)
\(\Rightarrow x^7-7x^5+14x^3-6x=\dfrac{34}{15}+x\\ \Rightarrow15x^7-105x^5+210x^3-105x-34=0\left(1\right)\)
Vậy (1) nhận \(x=\sqrt[7]{\dfrac{3}{5}}+\sqrt[7]{\dfrac{5}{3}}\) làm nghiệm
Bài 2 đa thức bậc 2 chia đa thức bậc 2 dư đa thức bậc 1 ??
tìm 1 đa thức có hệ số nghiệm bậc 7 nhận x=\(\sqrt[7]{\frac{2}{3}}+\sqrt[7]{\frac{5}{2}}\) là nghiệm
tìm 1 đa thức có hệ số nguyên bậc 7 nhận x=\(\sqrt[7]{\frac{2}{5}}+\sqrt[7]{\frac{5}{2}}\) là nghiệm
Đặt \(a=\sqrt[7]{\frac{2}{5}}\Rightarrow x=a+\frac{1}{a}\Rightarrow\left\{{}\begin{matrix}x^2=a^2+\frac{1}{a^2}+2\\x^3=a^3+\frac{1}{a^3}+3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-2=a^2+\frac{1}{a^2}\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^4-4x^2+4=a^4+\frac{1}{a^4}+2\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^4-4x^2+2=a^4+\frac{1}{a^4}\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\)
\(\Rightarrow\left(x^4-4x^2+2\right)\left(x^3-3x\right)=\left(a^4+\frac{1}{a^4}\right)\left(a^3+\frac{1}{a^3}\right)\)
\(\Leftrightarrow x^7-7x^5+14x^3-6x=a^7+\frac{1}{a^7}+a+\frac{1}{a}\)
\(\Leftrightarrow x^7-7x^5+14x^3-6x=\frac{2}{5}+\frac{5}{2}+x\)
\(\Leftrightarrow x^7-7x^5+14x^3-7x-\frac{29}{10}=0\)
\(\Leftrightarrow10x^7-70x^5+140x^3-70x-29=0\)
Đây là 1 trong những pt có hệ số nguyên cần tìm
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)