Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số lần bắn trượt là x
=>Số lần bắntrúng là 20-x
Theo đề, ta có: 10(20-x)-5x=155
=>200-10x-5x=155
=>15x=45
=>x=3
1. Thời gian bơi của vận động viên bằng thời gian trôi của quả bóng, vận tốc dòng nước bằng vận tốc của quả bóng trôi.
vn=vb=ACt=1,8(km/h)vn=vb=ACt=1,8(km/h)
Gọi vận tốc của vận động viên so với nước là v0v0, vận tốc so với bờ khi xuôi và ngược dòng là v1,v2v1,v2
⇒v1=v0+vnv2=v0−vn⇒v1=v0+vnv2=v0−vn
Thời gian bơi xuôi dòng:
t1=ABv1=ABv0−vn(1)t1=ABv1=ABv0−vn(1)
Thời gian bơi ngược dòng:
t2=CBv2=CBv0−vn(2)t2=CBv2=CBv0−vn(2)
Theo bài toán: t1+t2=13h(3)t1+t2=13h(3)
Từ (1),(2) và (3), ta có: v0=7,2km/hv1=9km/hv2=5,4km/hv0=7,2km/hv1=9km/hv2=5,4km/h
2. Tổng thời gian của vận động viên:
t3=ABvn≈0,83(h)1. Thời gian bơi của vận động viên bằng thời gian trôi của quả bóng, vận tốc dòng nước bằng vận tốc của quả bóng trôi.
vn=vb=ACt=1,8(km/h)vn=vb=ACt=1,8(km/h)
Gọi vận tốc của vận động viên so với nước là v0v0, vận tốc so với bờ khi xuôi và ngược dòng là v1,v2v1,v2
⇒v1=v0+vnv2=v0−vn⇒v1=v0+vnv2=v0−vn
Thời gian bơi xuôi dòng:
t1=ABv1=ABv0−vn(1)t1=ABv1=ABv0−vn(1)
Thời gian bơi ngược dòng:
t2=CBv2=CBv0−vn(2)t2=CBv2=CBv0−vn(2)
Theo bài toán: t1+t2=13h(3)t1+t2=13h(3)
Từ (1),(2) và (3), ta có: v0=7,2km/hv1=9km/hv2=5,4km/hv0=7,2km/hv1=9km/hv2=5,4km/h
2. Tổng thời gian của vận động viên:
t3=ABvn≈0,83(h)
a) Cách lấy 2 viên bi trong túi là:
Xanh – đỏ; Xanh – trắng; Xanh – vàng; Đỏ - trắng; Đỏ - vàng; Trắng – vàng.
Có 6 cách lấy hai biên bi từ trong túi.
Biến cố \(A\) xảy ra khi 2 viên bi lấy ra có 1 viên bi màu đỏ
Có 3 kết quả thuận lợi cho biến cố \(A\) là Xanh – đỏ; Đỏ - trắng; Đỏ - vàng
Xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{1}{2}\).
b) Biến cố \(B\) xảy ra khi 2 viên bi lấy ra đều không có màu trắng
Có 3 kết quả thuận lợi cho \(B\) là : Xanh – đỏ; Xanh – vàng; Đỏ - vàng.
Xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{1}{2}\).
Vì 3 viên bi xanh, 4 viên bi đỏ và 5 viên b vàng có kích thước và khối lượng như nhau nên 12 kết quả của phép thử có khả năng xảy ra bằng nhau.
- Biến cố \(A\) xảy ra khi ta lấy được viên bi màu xanh nên có 3 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:
\(P\left( A \right) = \frac{3}{{12}} = \frac{1}{4}\).
- Biến cố \(B\) xảy ra khi ta lấy được viên bi không có màu vàng nên viên bi lấy được có thể có màu xanh hoặc màu đỏ. Do đó, có 7 kết quả thuận lợi cho \(B\). Xác suất của biến có \(B\) là:
\(P\left( B \right) = \frac{7}{{12}}\).
Giả sử có 100 vận động viên tham gia đại hội thể thao. Khi đó, số vận động viên đạt huy chương là \(100.21\% = 21\)(vận động viên)
Khi đó, gặp ngẫu nhiên một vận động viên thì xác suất vận động viên đó là vận động viên đạt huy chương là \(\frac{{21}}{{100}}\).
Vậy xác suất gặp được vận động viên đạt huy chương là \(\frac{{21}}{{100}}\).