K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

\(\frac{0,5+\frac{2}{43}-\frac{2}{2017}}{\frac{3}{4}+\frac{3}{43}-\frac{3}{2017}}:\frac{\frac{4}{91}+\frac{4}{34}+\frac{4}{2017}}{\frac{5}{91}+\frac{5}{34}+\frac{5}{2017}}\)

\(=\frac{\frac{2}{4}+\frac{2}{43}-\frac{2}{2017}}{\frac{3}{4}+\frac{3}{43}-\frac{3}{2017}}:\frac{4\left(\frac{1}{91}+\frac{1}{34}+\frac{1}{2017}\right)}{5\left(\frac{1}{91}+\frac{1}{34}+\frac{1}{2017}\right)}\)

\(=\frac{2\left(\frac{1}{4}+\frac{1}{43}-\frac{1}{2017}\right)}{3\left(\frac{1}{4}+\frac{1}{43}-\frac{1}{2017}\right)}:\frac{4}{5}\)

\(=\frac{2}{3}.\frac{5}{4}=\frac{5}{6}\)

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

19 tháng 6 2017

\(\frac{2017}{1.2.3}+\frac{2017}{2.3.4}+\frac{2017}{3.4.5}+...+\frac{2017}{19.20.21}\)

\(=2017\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\right)\)

19 tháng 6 2017

\(=2017.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right)\)

\(=2017.\left(1-\frac{1}{2}-\frac{1}{3}-\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\right)\right)\)

\(=2017.\left(1+\frac{1}{21}\right)\)phá ngoặc trước dấu trừ đổi dấu,rút gọn:

\(=2017.\frac{20}{21}=\frac{40340}{21}\)

23 tháng 4 2017

Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)

\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)

\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

Giờ ta thế vào bài toán ban đầu được

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)

\(=\frac{2017}{2018}\)  

15 tháng 3 2018

\(a)\) \(A=\frac{5\left(2^2.3^2\right)^9.\left(2^2\right)^6-2\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)

\(A=\frac{2^{30}.3^{18}.5-2^{29}.3^{18}}{2^{28}.3^{18}.5-2^{29}.3^{18}.7}\)

\(A=\frac{2^{29}.3^{18}\left(2.5-1\right)}{2^{28}.3^{18}\left(5-2.7\right)}\)

\(A=\frac{2\left(10-1\right)}{5-14}\)

\(A=\frac{2.9}{-9}\)

\(A=-2\)

Vậy \(A=-2\)

\(b)\) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)

\(B=81.\left[\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158158158}{711711711}\)

\(B=81.\left[\frac{12}{4}:\frac{5}{6}\right].\frac{2}{9}\)

\(B=81.\frac{18}{5}.\frac{2}{9}\)

\(B=\frac{324}{5}\)

Vậy \(B=\frac{324}{5}\)

Chúc bạn học tốt ~ ( mỏi tay qué >_< ) 

26 tháng 4 2017

Ta xét:

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\)

Gọi bội chung nhỏ nhất của \(1,2,3,...,2017\) là \(2^{10}.B\) (với B là tích các số nguyên tố khác 2)

Trong các số từ 1 đến 2017 chỉ có 1024 là số duy nhất có thể phân tích thành tích của các lũy thừa của các số nguyên tố trong đó có \(2^{10}\) còn các số còn lại thì tối đa chỉ phân tích được trong tích có tối đa là \(2^9\).

Vậy khi quy đồng tổng \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\) thì ngoại trừ \(\frac{1}{1024}\)thì sau khi quy đồng có tử là số lẻ. Còn các số khác sẽ có tử đều là số chẵn.

\(\Rightarrow\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}=\frac{sl}{sc}\)(sl: Số lẻ; sc: số chẵn)

Ta lại có: \(1+2+3+...+2017=\frac{2017.2018}{2}=2035153=sl\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right).\left(1+2+...+2017\right)=\frac{sl}{sc}.sl=\frac{sl}{sc}\)

Ta có tử là số lẻ, mẫu là số chẵn nên tử không bao giờ chia hết cho mẫu 

Vậy A không thể là số nguyên được.

25 tháng 4 2017

a là số nguyên

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)

9 tháng 5 2017

Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)

13 tháng 7 2017

Được cập nhật 41 giây trước (17:23)

  

Ta có :
2017(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)(14 +25 +...+20172020 )
=(114 )+(125 )+...+(120172020 )
=34 +35 +....+32020 
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5 
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1