K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(a,=\left(4x^2-1\right)\left(2x-5\right)=8x^3-20x^2-2x+5\\ b,=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]=x^4-\left(x-3\right)^2\\ =x^4-x^2+6x-9\)

1) Làm tính nhân a) 𝑥. (𝑥2 – 5)                                        b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3)c) (2𝑥 − 6)(3𝑥 + 6)                            2) Tính (áp dụng Hằng đẳng thức) d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦)a) (2𝑥 + 5)(2𝑥 − 5)                                      b) (𝑥 − 3)2   c) (4 + 3𝑥)2d) (𝑥 − 2𝑦)3                                        e) (5𝑥 + 3𝑦)3f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2)                    g) (2𝑦 + 𝑥)(4𝑦2 −...
Đọc tiếp

1) Làm tính nhân

a) 𝑥. (𝑥2 – 5)                                        

b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3)

c) (2𝑥 − 6)(3𝑥 + 6)                            

2) Tính (áp dụng Hằng đẳng thức)

d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦)

a) (2𝑥 + 5)(2𝑥 − 5)                           

           

b) (𝑥 − 3)2   c) (4 + 3𝑥)2

d) (𝑥 − 2𝑦)3                                        

e) (5𝑥 + 3𝑦)3

f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2)                    

g) (2𝑦 + 𝑥)(4𝑦2 − 2𝑥𝑦 + 𝑥2)

3) Phân tích các đa thức sau thành nhân tử

a) 𝑥2 + 2𝑥                       

b) 𝑥2 − 6𝑥 + 9

c) 5(𝑥 – 𝑦) – 𝑦(𝑦 – 𝑥)       

 d) 2𝑥 − 𝑦2 + 2𝑥𝑦 − 𝑦

a) 6𝑥3𝑦4 + 12𝑥2𝑦3 − 18𝑥3𝑦2 

b) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 36

c) 5𝑥2 + 3𝑥 − 5𝑥𝑦 − 3𝑦            

d) 𝑥2 − 5𝑥 − 6

e) 𝑥3 − 3𝑥2 − 4𝑥 + 12     

4) Rút gọn biểu thức

f) 𝑥3 + 27 + (𝑥 + 3)(𝑥 − 9)

a)   (𝑥2 + 1)(𝑥 − 3) − (𝑥 − 3)(𝑥2 + 3𝑥 + 9)

b)  (𝑥 + 2)2 + 𝑥(𝑥 + 5)

c)   (5𝑥 + 4𝑦)(5𝑥 − 4𝑦) − 24𝑥2 + 15𝑦2 5) Tìm x, biết:

a) 2𝑥(𝑥2 − 9) = 0                               b) 2𝑥(𝑥 − 2021) − 𝑥 + 2021 = 0

c) 4𝑥2 − 16𝑥 = 0                      d) (3𝑥 + 7)2 − (𝑥 + 1)2 = 0

6) Làm tính chia

a) 14𝑥3𝑦 ∶ 10𝑥2                        b) (𝑥3 − 27) ∶ (3 − 𝑥)

c) 8𝑥3𝑦3𝑧 ∶ 6𝑥𝑦3    d) (𝑥2 − 9𝑦2 + 4𝑥 + 4) ∶ (𝑥 + 3𝑦 + 2)  

7) a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴 = (𝑥 − 1)(𝑥 − 3) + 11

b)  Tìm giá trị lớn nhất của biểu thức: 𝐵 = 5 − 4𝑥2 + 4𝑥

c)   Cho 𝑥 – 𝑦 = 2. Tìm giá trị lớn nhất của đa thức 𝐵 = 𝑦2 − 3𝑥2 

8) Tìm số  để đa thức 𝑥3 − 3𝑥2 + 5𝑥 + 𝑎 chia hết cho đa thức 𝑥 − 2 9) Áp dụng kết quả bài tập 31 – SGK – tr.16, hãy:

a)   Tính 𝑎3 − 𝑏3  biết  𝑎. 𝑏 = 8  và 𝑎 − 𝑏 = −6

b)  Tính 𝑎3 + 𝑏3  biết  𝑎. 𝑏 = −12  và 𝑎 + 𝑏 = 1

c)   Tính 𝑎3 + 𝑏3  biết  𝑎2 + 𝑏2 = 30  và 𝑎 + 𝑏 = 2

2
24 tháng 11 2021

 

5) a) 2x(x^2 - 9) = 0

<=> 2x(x - 3)(x + 3) = 0

<=> x = 0 hoặc x = 3 hoặc x = -3

b) 2x(x - 2021) - x + 2021 = 0

<=> (2x - 1)(x - 2021) = 0

<=> 2x - 1 = 0 hoặc x - 2021 = 0

<=> x = 1/2 hoặc x = 2021

c) 4x^2 - 16x = 0

<=> 4x(x - 4) = 0

<=> x = 0 hoặc x = 4

d) (3x + 7)^2 - (x + 1)^2 = 0

<=> (3x + 7 + x + 1)(3x + 7 - x - 1) = 0

<=> (4x + 8)(2x + 6) = 0

<=> 4x + 8 = 0 hoặc 2x + 6 = 0

<=> x = -2 hoặc x = -3

24 tháng 11 2021

mình giải tạm nha

24 tháng 11 2021

K hiểu 😐😐😐

24 tháng 11 2021

\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)

\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 1:

a. $x(x^2-5)=x^3-5x$

b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$

c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$

d.

$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$

 

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 2:
a.

\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)

b.

\((x-3)^2=x^2-6x+9\)

c.

\((4+3x)^2=9x^2+24x+16\)

d.

\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)

e.

\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)

\(=125x^3+225x^2y+135xy^2+27y^3\)

f.

\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)

25 tháng 11 2021

tl nhanh giúp mình nha

25 tháng 11 2021

\(a,\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Leftrightarrow\left(2x-1\right)\left(x-2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2021\end{matrix}\right.\\ c,\Leftrightarrow4x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ d,\Leftrightarrow\left(3x+7-x-1\right)\left(3x+7+x+1\right)=0\\ \Leftrightarrow\left(2x+6\right)\left(4x+8\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

15 tháng 4 2020

cho mình sửa lại câu d nhé

⇔(x+1)2=\(\frac{4}{3}\)

\(\left[{}\begin{matrix}x+1=\sqrt{\frac{4}{3}}\\x+1=-\sqrt{\frac{4}{3}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{4}{3}}-1\\x=-\sqrt{\frac{4}{3}}-1\end{matrix}\right.\)

15 tháng 4 2020

a, 2x - x - 3 + 4 = -x - 3

\(\Leftrightarrow\) x + 1 = -x - 3

\(\Leftrightarrow\) x + x = -3 - 1

\(\Leftrightarrow\) 2x = -4

\(\Leftrightarrow\) x = -2

Vậy S = {-2}

b, 3x - 22x + 5 = 6x + 14x - 3

\(\Leftrightarrow\) -19x + 5 = 20x - 3

\(\Leftrightarrow\) -19x - 20x = -3 - 5

\(\Leftrightarrow\) -39x = -8

\(\Leftrightarrow\) x = \(\frac{8}{39}\)

Vậy S = {\(\frac{8}{39}\)}

c, x + 3x + 1 + x - 2x = 2

\(\Leftrightarrow\) 3x + 1 = 2

\(\Leftrightarrow\) 3x = 2 - 1

\(\Leftrightarrow\) 3x = 1

\(\Leftrightarrow\) x = \(\frac{1}{3}\)

Vậy S = {\(\frac{1}{3}\)}

Phần d mình ko hiểu, bạn viết rõ được ko!

Chúc bn học tốt!!

15 tháng 4 2020

Nguyễn Thị Anh Thư cái này bạn gửi một lần r mà!

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

23 tháng 10 2021

`a)7x^2y-14xy`

`=7xy(x-2)`

`b)xy-2x-5y+10`

`=xy-2x-(5y-10)`

`=x(y-2)-5(y-2)`

`=(y-2)(x-5)`

`c)x^2-10x-y^2+25`

`=(x^2-10x+25)-y^2`

`=(x-5)^2-y^2`

`=(x-5-y)(x-5+y)`