K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{32}+1\right)-2^{64}\)

\(=2^{64}-1-2^{64}=-1\)

25 tháng 5 2018

Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64

(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2²-1)(2²+1)(2⁴+1)...(2³²+1)

=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1

Vậy C=-1

23 tháng 8 2015

3  = 2^2 - 1 

Áp dụng HĐT a^2 - b^2 

kq : 2^128 - 1 

19 tháng 6 2019

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

19 tháng 6 2019

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.

3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=(5^4-1)(5^4+1)(5^8+1)(5^16+1)

=(5^8-1)(5^8+1)(5^16+1)

=(5^16-1)(5^16+1)

=5^32-1

4:

D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)

=(4^8-1)(4^8+1)*...*(4^64+1)

=...

=4^128-1

5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)

=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1

=5^256-1+5^256-1

=2*5^256-2

7 tháng 7 2023

thsu là rất ngưỡng mộ anh ạ 🥹 em mấy lần off vì quá nhác nhưng lần nào ngoi lại lên cũng thấy anh cày chăm chỉ quá tr 😭

21 tháng 6 2017

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)...\left(2^{32}+1\right)\)

..............................................................

\(=2^{64}-1\)

29 tháng 6 2017

42.(-53)+47.(-156)+(-114).(-47)