Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)
2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)
3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)
4 , bạn làm tương tự nhé
5 , bạn làm tương tự nhé
6 , bạn làm tương tự nhé
bài 1:
a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)
\(=-33\sqrt{2}\)
b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
\(=10-2\sqrt{21}+14\sqrt{21}\)
\(=12\sqrt{21}+10\)
Bài 2:
a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)
\(\Leftrightarrow\left|2x+3\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}=8\)
hay x=4
c: Ta có: \(\sqrt{9x-9}+1=13\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow x-1=16\)
hay x=17
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
a: Ta có: \(\sqrt{75}-2\sqrt{27}+\sqrt{48}\)
\(=5\sqrt{3}-2\cdot3\sqrt{3}+4\sqrt{3}\)
\(=3\sqrt{3}\)
c: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7}+1-\sqrt{7}+2\)
=3
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
Lời giải:
a.
\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)
$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.
$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$
$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.
$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$
$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$
$=1(3+\sqrt{2})=3+\sqrt{2}$
a) \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=7\sqrt{16}+3\sqrt{9}-2\sqrt{4}\)
\(=7.4+3.3-2.2=28+9-4=33\)
b) \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\sqrt{25}+\sqrt{49}-1\)
\(=5+7-1=11\)
c) \(\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\dfrac{\sqrt{1}}{\sqrt{7}}-\dfrac{\sqrt{16}}{\sqrt{7}}+\sqrt{7}\right):\sqrt{7}\)
\(=\left(\dfrac{1}{\sqrt{7}}-\dfrac{4}{\sqrt{7}}+\sqrt{7}\right):\sqrt{7}=\dfrac{1}{\sqrt{7}.\sqrt{7}}-\dfrac{4}{\sqrt{7}.\sqrt{7}}+1\)
\(=\dfrac{1}{7}-\dfrac{4}{7}+1=\dfrac{1}{7}-\dfrac{4}{7}+\dfrac{7}{7}\Leftrightarrow\dfrac{1-4+7}{7}=\dfrac{4}{7}\)
bạn ghi rõ tại sao từ cái đề mà có ngay phép tính thứ hai cho mình với