Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I=1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I=1-1/2010
I=2009/2010
Vậy I=2009/2010
I = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I = 1-1/2010
I = 2009/2010
Chúc bạn học tốt nha
\(I=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2009.2010}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+.....+\left(\frac{1}{2009}-\frac{1}{2009}\right)-\frac{1}{2010}\)
\(I=1-0-0-...-0-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)
I = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2009 - 1/2010
I = 1 - 1/2010
I = 2009/2010
Vậy I = 2009/2010
=>3C=1.2.3+2.3.3+...+99.100.3
= 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 99.100.(101 - 98)
= 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
= 99.100.101
=>\(C=\frac{99.100.101}{3}=333300\)
\(C = 1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\)\(\left(101-98\right)\)
\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)\)\(-\left(0.1.2+1.2.3+2.3.4+...+98.99.100\right)\)
\(3C=99.100.101-0.1.2\)
\(3C=999900-0=999900\)
\(C=999900:3\)
\(\Rightarrow C=333300\)
= 1 - 1/2 . 1/2 -1/3 . 1/3 - 1/4 ... 1/2009 - 1/2010
= 1 - 1/ 2010
=1/2010
1/1.2+1/2.3+1/3.4+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
=1 - 1/2 + 1/2 - 1/3 + ..... + 1/2009 - 1/2010
=1 - 1/2010
=2009/2010
1-1/2+1/2-1/3+1/3-1/4+... +1/2009-1/2010
1-1/2010=2009/2010
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}\)
=>\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}\)
1/1.2+1/2.3+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
=\(1-\dfrac{1}{5}\)
=\(\dfrac{4}{5}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}\)
\(I=\frac{2009}{2010}\)