Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)
\(1,\left(2x+1\right)^2+2\left(2x+1\right)+1\\ =\left(2x+1\right)^2+2.\left(2x+1\right).1+1^2\\ =\left[\left(2x+1\right)+1\right]^2\\ b,\left(3x-2y\right)^2+4\left(3x-2y\right)+4\\ =\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\\ =\left[\left(3x-2y\right)+2\right]^2\)
1) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\cdot1+1^2\)
\(=\left[\left(2x+1\right)+1\right]^2\)
\(=\left(2x+2\right)^2\)
2) \(\left(3x+2y\right)^2+4\left(3x+2y\right)+4\)
\(=\left(3x+2y\right)^2+2\cdot\left(3x+2y\right)\cdot2+2^2\)
\(=\left[\left(3x+2y\right)+2\right]^2\)
\(=\left(3x+2y+2\right)^2\)
a) \(=x^2-5-x^2+49=44\)
b) Nhân tử cuối cùng bạn ghi gì vậy?
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`
\(A=x^3-8-128-x^3=-136\\ B=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(128+x^3\right)=x^3-8-128-x^3=-136\)
\(B=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
\(A=x^2-2x+1-x^2+4=5-2x\)
\(B=27x^3+8-x^2+9=27x^3-x^2+17\)
\(C=3x^2y-6xy^2-2x\left(x^2-2x^2y+x^2y^2\right)=3x^2y-6xy^2-2x^3+4x^3y-2x^3y^2\)
Em chỉ cần nhớ hằng đẳng thức và áp dụng là biến đổi được ^^
a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)
\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)
\(=\left(3x-2y+2\right)^2\)
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4\left(3x-2y\right)+4=\left(3x-2y+2\right)^2\)