K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)

\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)

\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.2^9.3}\)

\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{25}.5^{12}}\)

\(=\frac{3^3.1.1}{1.1.5^2}\)

\(=\frac{27}{25}\)

Sai rồi

 

S=4078378

Cách làm;

S=2^2+3^2=4^2+......+2019^2

S=(2+3+4+.....+2019)^2

Số số hạng(trong ngoặc nhé)là

(2019-2):1+1=2018

S=(2019+2).2018=4078378

=>S=4078378

A=1+22+23+24+...+22019

⇔2A=2+23+24+25+...+22019

\(\Leftrightarrow A=2^{^2}\left(2^{^{2019}}-1\right)\)

Bài 1: Rút gọn

\(A=\dfrac{-56\cdot49+\left(-49\right)\cdot44}{73\cdot14+\left(-14\right)\cdot\left(-27\right)}\)

\(=\dfrac{49\cdot\left(-56-44\right)}{14\cdot\left(73+27\right)}\)

\(=\dfrac{-49\cdot100}{14\cdot100}=\dfrac{-7}{2}\)

19 tháng 4 2020

\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{\left(3^2\right)^{14}\cdot\left(5^2\right)^5\cdot\left(2^3\right)^7}{\left(3^2\cdot2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(3\cdot2^3\right)^3}\)

\(=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{25}\cdot5^{12}\cdot2^{21}}=\frac{3^3}{5^2}=\frac{27}{25}\)

16 tháng 2 2019

Ta có: \(\dfrac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)= \(\dfrac{9^{14}.25^5.8^7}{9^{12}.2^{12}.\left(25^2\right)^3.8^3.3^3}\)=\(\dfrac{9^{12}.9^2.25^5.8^7}{9^{12}.2^{12}.25^6.8^3.3^3}\)

= \(\dfrac{9^{12}.3^4.25^5.8^7}{9^{12}.\left(2^{12}.8^3\right).25^5.25.3^3}\)=\(\dfrac{9^{12}.3^3.3.25^5.8^7}{9^{12}.8^7.25^5.25.3^3}\)=\(\dfrac{\left(9^{12}.3^3.25^5.8^7\right).3}{\left(9^{12}.3^3.25^5.8^7\right).25}\)

=\(\dfrac{3}{25}\)

( Có một vài bước mik làm tắt bặn nhé!)

16 tháng 3 2017

\(\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)

\(=\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=\dfrac{3}{1}=3\)

16 tháng 3 2017

\(A=\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(3.2^3\right)^3}\)

=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}\)=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=3\)

25 tháng 3 2019

\(S=2\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)

\(S=2\left(1-\frac{1}{106}\right)\)

\(S=\frac{210}{106}=\frac{105}{53}\)

26 tháng 3 2019

\(S=2.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)

\(S=2.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...-\frac{1}{101}+\frac{1}{101}-\frac{1}{106}\right)\)

\(S=2.\left[1+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{11}\frac{1}{11}\right)+...+\left(\frac{-1}{101}+\frac{1}{101}\right)-\frac{1}{106}\right]\)

\(S=2.\left[1+0+0+...+0-\frac{1}{106}\right]\)

\(S=2.\left[1-\frac{1}{106}\right]\)

\(S=2.\frac{105}{106}\)

6 tháng 8 2015

\(\frac{9^{14}}{18^{12}}.\frac{25^5}{625^3}.\frac{8^7}{24^3}\)

\(=\frac{9^{14}}{\left(9.2\right)^{12}}.\frac{25^5}{25^6}.\frac{8^7}{\left(8.3\right)^3}\)

\(=\frac{9^{14}}{9^{12}.2^{12}}.\frac{1}{25}.\frac{8^7}{8^3.3^3}\)

\(=\frac{9^2}{2^{12}}.\frac{1}{25}.\frac{8^4}{3^3}\)

\(=\frac{81}{4096}.\frac{1}{25}.\frac{4096}{27}\)

\(=\frac{81}{4096}.\frac{4096}{27}.\frac{1}{24}=3.\frac{1}{24}=\frac{3}{24}\)

 

 

**** **** ****

11 tháng 2 2018

Ngu voi ko biet lam