K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

a) \(x\in S=(-\infty;-5]\cup[7;+\infty)\)

b) \(x\in S=\left(-1;2\right)\cup(5;10]\)

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)

2: x>1

4: \(x\in\left(-2;+\infty\right)\)

1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

giải các hệ BPT sau: a) \(\left\{{}\begin{matrix}5x-24x+5\\5x-4< x+2\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\) g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\) j)...
Đọc tiếp

giải các hệ BPT sau:

a) \(\left\{{}\begin{matrix}5x-2>4x+5\\5x-4< x+2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\)

c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\)

d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)

e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\)

f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\)

g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\)

h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)

j) \(\left\{{}\begin{matrix}\frac{3x+1}{2}-\frac{3-x}{3}\le\frac{x+1}{4}-\frac{2x-1}{3}\\3-\frac{2x+1}{5}>x+\frac{4}{3}\end{matrix}\right.\)

3
25 tháng 3 2020
https://i.imgur.com/NOxfqjV.jpg
25 tháng 3 2020
https://i.imgur.com/awOKwJi.jpg