Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+2\right|+\left|x-1\right|\)
a) Biểu thức A đã đưa về dạng thu gọn.
b) Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|x-1\right|\ge0\end{cases}}\Rightarrow A=0\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|x-1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\end{cases}}\)(loại vì x khác nhau)
Vậy A không thề bằng 0.
c) Amin = 0 \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
N=\(\left|2+x\right|-\left(x+1\right)=2+x-x-1=1\) (vì \(x\ge-2\Rightarrow\left|2+x\right|=2+x\))
a) Vì x < 3 => | x - 3 | = - ( x - 3 )
=> - ( x - 3 ) + x - 5
=> -x + 3 + x - 5
=> ( -x + x ) +( 3 - 5)
=> 0 + ( -2 )
=> -2
b)Vì x lớn hơn hoặc bằng -2 => |2 + x| = x + 2
=> ( x + 2 ) - ( x + 1)
= x + 2 - x - 1
= ( x - x ) + ( 2 - 1)
= 0 + 1
= 1
Câu c tương tự nhé
Giá trị lớn nhất của biểu thức 7- trị tuyệt đối x^3 - trị tuyệt đối của x^2 - trị tuyệt đối của x là
Vì x <-2 nên x+2 <0
=> /x+2/= -x-2
=> B= -x-2+x-1= -3
Vậy B= -3