Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Xét thiết diện qua trục hình nón là tam giác đều ABC cạnh a
Bán kính mặt cầu ngoại tiếp khối nón là bán kính đường tròn ngoại tiếp Δ A B C ⇒ R = a 3 3
Bán kính mặt cầu ngoại tiếp khối nón là bán kính đường tròn nội tiếp Δ A B C ⇒ r = a 3 6
Vậy tỉ số V 1 V 2 = R 3 : r 3 = 3 3 3 : 3 6 3 = 2 3 = 8
Đáp án C
Giả sử thiết diện qua trục hình nón là DABC như hình vẽ. Vì DABC cân tại A, góc ở đáy bằng 45 ° nên DABC vuông cân tại A. Gọi O là tâm của đáy ⇒ O A = O B = O C = a , vậy O là tâm mặt cầu ngoại tiếp hình nón, bán kính bằng a → thể tích mặt cầu bằng: 4 3 π a 3
Đáp án A.
Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ S E F đều” (hình vẽ).
Hình vuông ABCD nội tiếp đường tròn (O) nên
A B = B D = 2 R = A B 2 ⇔ A B = 2 R .
⇒ Bán kính đáy và chiều cao của hình trụ (T) lần lượt là r = A B 2 = 2 R 2 và h = A B = 2 R .
Thể tích khối trụ là V T = πr 2 h = π . 2 R 2 2 . 2 R = π 2 R 3 2 .
Ta có ∆ S E F đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của Δ S E F .
Gọi H là trung điểm của EF thì S H = 3 O H = 3 R ⇒ H F = S H . tan 30 ° = R 3
⇒ Bán kính đáy và chiều cao của hình nón (N) lần lượt là H F = R 3 và S H = 3 R . Thể tích khối nón là V N = 1 3 π . HF 2 . SH = 1 3 π R 3 2 . 3 R = 3 πR 3 .
Vậy V T V N = π 2 R 3 2 3 πR 3 = 2 6 .
Đáp án A
Hình nón có thiết diện qua trục là Δ đều cạnh 4
=> Bán kính đáy r=2 độ dài đường sinh l=4.
Suy ra diện tích toàn phần của hình nón là: S t p = π r l + π r 2 = π .2.4 + π .2 2 = 12 π .
Vậy bán kính mặt cầu là: S = 4 π R 2 ⇒ R = S 4 π = 12 π 4 π = 3
Gọi D là tâm đường tròn ngoại tiếp ∆ A B C . Kẻ O H ⊥ A B . Khi đó: V 1 V 2 = O H O A = a 3 6 . 3 a 3 = 1 2
Đáp án A
Ta có:
V 1 V 2 = a 3 2 2 a 3 6 2 = 4
Đáp án C