Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp: sử dụng công thức tính khoảng vân , số vân sáng trong miền giao thoa L
Cách giải:
Khoảng vân tương ứng với hai bức xạ lần lượt là:
Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:
Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là:
Đáp án C
Đáp án C
Khoảng vân tương ứng với hai bức xạ lần lượt là:
Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:
Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là:
Chọn đáp án D
Các bức xạ đều cho vân sáng bậc k = 0 tại tại O ⇒vân trung tâm O là một vân trùng. Tại điểm M ≠O trên màn vân sáng của hai bức xạ trùng nhau thì ta có OM = k 1 i 1 = k 2 i 2 ( k 1 , k 2 nguyên dương)
⇒ k 1 λ 1 = k 2 λ 2 ⇒ k 1 k 2 = λ 2 λ 1 = 5 6 ⇒ k 1 chia hết cho 5, k 2 chia hết cho 6.
Vân trùng gần vân trung tâm nhất cách vân trung tâm một khoảng
i’ = k 1 min . i 1 = 5. λ 1 D a = 6 m m , các vân trùng nằm phân bố đều đặn trên màn và khoảng cách giữa hai vân trùng liên tiếp bằng i’= 6 mm.
Ta có L 2. i ' = 2 , 33
→ số vân trùng của hai bức xạ trên màn bằng n = 2 L 2 i ' + 1 = 2.2 + 1 = 5 vân.
Các bức xạ đều cho vân sáng bậc k = 0 tại tại O ⇒ vân trung tâm O là một vân trùng. Tại điểm M ≠ O trên màn vân sáng của hai bức xạ trùng nhau thì ta có
Vân trùng gần vân trung tâm nhất cách vân trung tâm một khoảng
các vân trùng nằm phân bố đều đặn trên màn và khoảng cách giữa hai vân trùng liên tiếp bằng i’= 6 mm
→ số vân trùng của hai bức xạ trên màn bằng
Đáp án A
Nguyên hóa \(\left(\lambda_1;\lambda_2;\lambda_3\right)=\left(4;5;6\right)\)
\(BCNN\left(4;5;6\right)=60\Rightarrow Bac:\left\{{}\begin{matrix}\lambda_1:\dfrac{60}{4}=15\\\lambda_2:\dfrac{60}{5}=12\\\lambda_3:\dfrac{60}{6}=10\end{matrix}\right.\)
\(\Rightarrow i_{trung}=15.i_1=\dfrac{15.\lambda_1.D}{a}\)
Có nghĩa là tìm số vân sáng tạo bởi 1 bức xạ trong khoảng
\(0< ...< \dfrac{15.\lambda_1.D}{a}\)
Ta nhận thấy bậc của bức xạ 1 tại vị trí trùng nhau của 3 bức xạ lần đầu tiên là bậc 15=> trong khoảng đang xét có 14 vân sáng của bức xạ 1
Tương tự, có 11 vân sáng của bx 2 và 9 vân sáng của bx 3
=>Tổng cộng có: \(14+11+9=34\left(van-sang\right)\)
Ta xét xem có những cặp bức xạ nào cho vân sáng trùng nhau
Xét bức xạ 1 và 2: \(\dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{5}{4}\Rightarrow i_{12}=5.i_1=\dfrac{5.\lambda_1.D}{a}\)
\(\Rightarrow So-van-trung=k_{12}.i_{12}=\dfrac{k_{12}.5.\lambda_1D}{a}\)
\(\Rightarrow0< \dfrac{5.k_{12}.\lambda_1.D}{a}< \dfrac{15.\lambda_1.D}{a}\Leftrightarrow0< k_{12}< 3\)
\(\Rightarrow k_{12}=1;2\)=> co 2 van trung cua buc xa 1 va buc xa 2
Xet bx 2 va bx 3 \(\dfrac{k_2}{k_3}=\dfrac{\lambda_3}{\lambda_2}=\dfrac{6}{5}\Rightarrow i_{23}=6.i_2=\dfrac{6.\lambda_2.D}{a}\)
\(\Rightarrow So-van-trung=k_{23}.i_{23}=\dfrac{k_{23}.6.\lambda_2.D}{a}\)
\(0< \dfrac{6k_{23}.\lambda_2.D}{a}< \dfrac{15.\lambda_1.D}{a}\Leftrightarrow0< k_{23}< 2\Rightarrow k_{23}=1\)
=> co 1 van trung cua bx 2 va bx 3
Xet bx 1 va bx 3 \(\dfrac{k_1}{k_3}=\dfrac{\lambda_3}{\lambda_1}=\dfrac{3}{2}\Rightarrow i_{13}=3.i_1=\dfrac{3.\lambda_1.D}{a}\)
\(\Rightarrow So-van-trung=k_{13}.i_{13}=\dfrac{k_{13}.3.\lambda_1.D}{a}\)
\(\Rightarrow0< \dfrac{3.k_{13}.\lambda_1.D}{a}< \dfrac{15.\lambda_1.D}{a}\Leftrightarrow0< k_{13}< 5\)
\(\Rightarrow k_{13}=1;2;3;4\)
=> co 4 van trung cua bx 1 va bx 3
\(\Rightarrow So-van-trung-tong-cong:4+2+1=7\left(van-trung\right)\)
Vậy số vân chỉ có 1 bức xạ cho vân sáng là: \(34-7=27\left(van\right)\)
- Khoảng vân tương ứng với hai bức xạ lần lượt là:
- Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:
- Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là: