K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đặt \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\)

\(\Rightarrow\frac{4}{3}C=\frac{4}{3}.\left(\frac{3\left|x\right|+2}{4\left|x\right|-5}\right)=\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{12\left|x\right|-15+23}{12\left|x\right|-15}\)

                                                                \(=1+\frac{23}{12\left|x\right|-15}\)

Để C đạt GTLN \(\Leftrightarrow\left(12\left|x\right|-15\right)_{min}\)

Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow12\left|x\right|\ge0\Rightarrow12\left|x\right|-15\ge-15\)

Dấu "=" xảy ra <=> \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ...

7 tháng 2 2018

\(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}=\frac{3}{4}\cdot\frac{4\left(3\left|x\right|+2\right)}{3\left(4\left|x\right|-5\right)}=\frac{3}{4}\cdot\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{3}{4}\left(1+\frac{23}{12\left|x\right|-15}\right)\)

A lớn nhất khi \(\frac{23}{12\left|x\right|-15}\) lớn nhất => 12|x| - 15 nhỏ nhất và 12|x| - 15 > 0 => x = 2

Vậy \(A_{Max}=\frac{3}{4}\left(1+\frac{23}{9}\right)=\frac{8}{3}\) khi x = 2

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

17 tháng 6 2016

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

31 tháng 10 2021

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

31 tháng 10 2021

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

10 tháng 7 2018

Đặt \(A=\frac{5}{4\left(x-3\right)^2+2}\) 

Ta có : 

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\)\(4\left(x-3\right)^2\ge0\)

\(\Rightarrow\)\(4\left(x-3\right)^2+2\ge2\)

\(\Rightarrow\)\(\frac{5}{4\left(x-3\right)^2+2}\le\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTLN của \(A\) là \(\frac{5}{2}\) khi \(x=3\)

Chúc bạn học tốt ~