\(\text{Giải phương trình sau(biến đổi đặc biệt):}\)

\(E=\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

E = ( x - 29 ) / 1970 + ( x - 27 ) / 1972 + ( x - 25 ) / 1974 + ( x - 23 ) / 1976 + ( x - 21 ) / 1978 + ( x - 19 ) / 1980 = ( x - 1970 ) / 29 + ( x - 1972 ) / 27 + ( x - 1974 ) / 25 + ( x - 1976 ) / 23 + ( x - 1978 ) / 21 + ( x - 1980 ) / 19

( Trừ từng số hạng cho 1 ra như sau )

E = (x - 1999)/ 1970 + ( x - 1999 ) / 1972 + ( x - 1999) / 1974 + ( x - 1999)/ 1976 + ( x -1999) / 1978 + ( x - 1999)/ 1980 = ( x - 1999)/29 + ( x - 1999) / 27 + ( x - 1999 ) / 25 + ( x - 1999) / 23 + ( x - 1999)/21 + ( x - 1999) / 19

< = > ( x - 1999 ) / 1970 + ( x - 1999 ) / 1972 + ( x - 1999 ) / 1974 + ( x - 1999) / 1976 + ( x - 1999) / 1978 + ( x - 1999) / 1980 - ( x - 1999) / 29 - ( x - 1999)/ 27 - ( 1 - 1999) / 25 - ( x-1999) / 23 - ( x - 1999) / 21 - ( x - 1999) / 19 = 0 ( chuyển vế )

< = > ( x - 1999 ) ( 1/1970 + 1/ 1972 + 1/1974 + 1/1976 + 1/1978 + 1/1980 - 1/29 - 1/27 - 1/25 - 1/23 - 1/21 - 1/19) = 0

Vì ( 1/1970 + 1/1972 + 1/1974 + 1/1976 + 1/1978 + 1/1980 - 1/29 -1/27 - 1/25 - 123 - 1/21 - 1/19 ) khác 0 nên để đẳng thức bằng 0 thì bắt buộc x - 1999 = 0

< = > x = 0 + 1999 = 1999

Vậy tập nghiệm của phương trình là S = { 1999 }

18 tháng 6 2017

\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)

\(\Leftrightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=0\)

\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)

\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)

\(\Leftrightarrow x-258=0\)(vì \(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\ne0\))

\(\Leftrightarrow x=258\)

vậy phương trình có tập nghiệm là: S={258}

25 tháng 10 2020

a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)

ĐK : x ≥ 0

⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)

⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)

⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)

⇔ \(-3\sqrt{x}=-5\)

⇔ \(\sqrt{x}=15\)

⇔ \(x=225\)( tm )

b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

ĐK : x ≤ 3

⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)

⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)

⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)

⇔ \(3\sqrt{3-x}=6\)

⇔ \(\sqrt{3-x}=2\)

⇔ \(3-x=4\)

⇔ \(x=-1\)( tm )

c) \(\sqrt{9x^2+12x+4}=4\)

⇔ \(\sqrt{\left(3x+2\right)^2}=4\)

⇔ \(\left|3x+2\right|=4\)

⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)

ĐK : x ≥ 1

⇔  \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\sqrt{x-1}=1\)

⇔ \(x-1=1\)

⇔ \(x=2\)( tm )

6 tháng 11 2017

-Xét \(x\ge y\ge z\). Dễ cm bđt đúng

-Xét \(x\ge z\ge y\)

Đặt x=z+a, z=y+b với \(a,b\ge0\)

=>x=y+a+b

BĐT\(< =>\frac{x-y}{y\left(y+1\right)}\ge\frac{x-z}{x\left(x+1\right)}+\frac{z-x}{z\left(z+1\right)}\)

<=>\(\frac{a+b}{y\left(y+1\right)}\ge\frac{a}{x\left(x+1\right)}+\frac{b}{z\left(z+1\right)}\)

Vì \(x\ge z\ge y=>x\left(x+1\right)\ge z\left(z+1\right)\ge y\left(y+1\right)\)

\(=>\frac{a}{y\left(y+1\right)}\ge\frac{a}{x\left(x+1\right)},\frac{b}{y\left(y+1\right)}\ge\frac{b}{z\left(z+1\right)}\)

=>\(\frac{a+b}{y\left(y+1\right)}\ge\frac{a}{x\left(x+1\right)}+\frac{b}{z\left(z+1\right)}\)=>bđt cần cm đúng=>đpcm

Cộng lần lượt với 1 bạn nhé                                                                                                                    (x2-27)/2+1+(x2-29)/4+1=(x2-31)/6+1+(x2-32)/7+1

(x2-25)/2+(x2-25)/4=(x2-25)/6+(x2-25)/7

(x2-25)/2+(x2-25)/4-(x2-25)/6-(x2-25)/7=0

(x2-25)(1/2+1/4-1/6-1/7)=0

(x2-25)37/84=0

=>x2-25=0

<=>x2=25

<=>x=-5 hoặc 5

 

2 tháng 1 2016

\(\Leftrightarrow\frac{x^2-27}{2}+1+\frac{x^2-29}{4}+1=\frac{x^2-31}{6}+1+\frac{x^2-32}{7}+1\)
\(\Leftrightarrow\frac{x^2-25}{2}+\frac{x^2-25}{4}-\frac{x^2-25}{6}-\frac{x^2-25}{7}=0\)
\(\Leftrightarrow\left(x^2-25\right)\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{6}-\frac{1}{7}\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow\int^{x=5}_{x=-5}\)
Tick cho Trực đi

Giải các hệ phương trình sau bằng phương pháp thế:a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)Bài giảia) Từ phương trình \(x-y=3\Rightarrow x=3+y\)Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được:  \(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)                                       ...
Đọc tiếp

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)

b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)

b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)

Bài giải

a) Từ phương trình \(x-y=3\Rightarrow x=3+y\)

Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được: 

 

\(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)

                                          \(\Leftrightarrow-y=-7\Leftrightarrow y=7\)

Thay \(y=7\) vào \(x=3\) ta được: 

\(x=3+7=10\)

Vậy: Hệ phương trình có nghiệm: \(\left(10;7\right)\)

b) Từ phương trình \(4x+y=2\Rightarrow y=2-4x\)

Thay \(y=2-4x\)vào phương trình \(7x-3y=5\)ta được:

\(7x-3\left(2-4x\right)=5\Leftrightarrow7x-6+12x=5\)

                                             \(\Leftrightarrow19x=11\Leftrightarrow x=\frac{11}{19}\)

Thay \(x=\frac{11}{19}\)vào \(y=2-4x\)ta được \(y=2-4.\frac{11}{19}=2-\frac{44}{19}=-\frac{6}{19}\)

Vậy: Hệ phương trình có nghiệm \(\left(\frac{11}{19};-\frac{6}{11}\right)\)

c) Từ phương trình \(x+3y=-2\Rightarrow x=-2-3y\)

Thay \(x=-2-3x\)vào phương trình \(5x-4y=11\)ta được

\(5\left(-2-3y\right)-4y=11\Leftrightarrow-10-15y-4y=11\)

                                                    \(\Leftrightarrow-19=21\Leftrightarrow y=-\frac{21}{19}\)

Thay \(y=-\frac{21}{19}\)vào \(x=-2-3y\)ta được \(x=-2-3\left(-\frac{21}{19}\right)=-2+\frac{69}{19}=\frac{25}{19}\)

Vậy: Hệ phương trình có nghiệm: \(\left(\frac{25}{19};-\frac{21}{19}\right)\)

1
21 tháng 1 2018

-guể viết lại làm gì man?

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)