Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)x< m\\\left(m-4\right)x< 2m-7\end{matrix}\right.\)
- Với \(m=3\) ktm, \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) thỏa mãn
- Với \(m< 3\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}< \dfrac{1}{2}\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-3< m< 3\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
- Với \(m>4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m>4\\m< \dfrac{7}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>4\)
- Với \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow\dfrac{10}{3}< m< 4\)
Vậy \(m>\dfrac{10}{3}\)
Đã test lại với 1 giá trị m nằm giữa \(\dfrac{10}{3}\) và \(\dfrac{7}{2}\) vẫn thỏa mãn, key của em có vẻ không đúng,
Xét \(\dfrac{2x-1}{x}-\dfrac{x-2}{x-1}< 0\Leftrightarrow\dfrac{x^2-x+1}{x\left(x-1\right)}< 0\)
\(\Leftrightarrow x\left(x-1\right)< 0\Leftrightarrow0< x< 1\)
Xét \(3x^2-4x+m< 0\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< -3x^2+4x\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< \max\limits_{\left(0;1\right)}\left(-3x^2+4x\right)\)
Xét \(f\left(x\right)=-3x^2+4x\) trên \(\left(0;1\right)\)
\(a=-3< 0\); \(-\dfrac{b}{2a}=\dfrac{2}{3}\in\left(0;1\right)\) \(\Rightarrow f\left(x\right)_{max}=f\left(\dfrac{2}{3}\right)=\dfrac{4}{3}\)
\(\Rightarrow m< \dfrac{4}{3}\)
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)